Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

Synthèse sur l'InfraToarcien

Nature de la nappe de l'InfraToarcien

La nappe de l'infra-toarcien constitue, sur une large part de sa superficie recouvrant le territoire du SAGE Clain, une nappe dite captive. Son fonctionnement est considéré comme Independent du réseau hydrographique. L'étude n'intègre donc pas de relation entre le réseau hydrographique et la nappe infra-Toarcienne. La nappe captive de l'infra-Toarcien constitue une ressource importante pour l'alimentation en eau potable sur le périmètre du SAGE du fait de sa protection naturelle vis-à-vis des pollutions de surface. Cette nappe est classée NAEP, Nappe réservée en priorité à l'eau potable, par le SDAGE Loire-Bretagne.

Localisation géographique

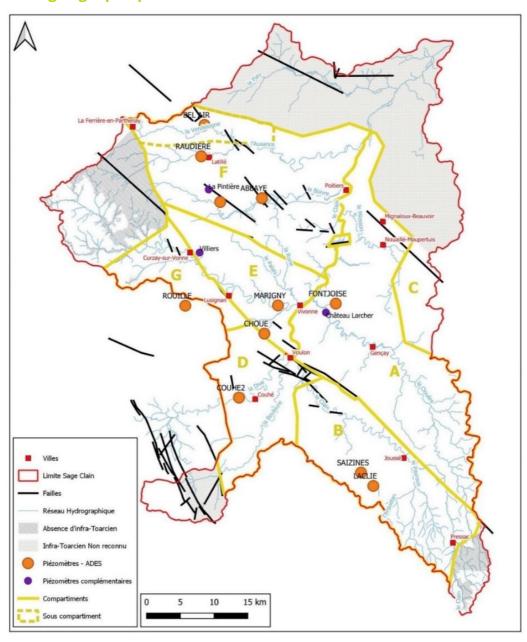


Figure 1 : Localisation géographique de la nappe captive Infratoarcien

Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

La sectorisation de la nappe captive InfraToarcien est établie en 6 compartiments, avec les stations piézométriques suivantes :

Tableau 1: Infratoarcien - Sectorisation de la nappe captive et stations piézométriques de référence

Compartiments	Station piézométrique	Nom	Commune
Α	BSS001PNRK	FONTJOISE	Château-Larcher
В	BSS001QUTQ	SAIZINE	Saint-Romain
D	BSS001PPKQ	COUHE2 (Bréjeuille)	Valence en Poitou
E	BSS001PNMC	CHOUE	Celle-Lévescault
F	BSS001NQUT	RAUDIERE	Latillé
G	BSS001PMZG	ROUILLE	Rouillé

Il est à noter que des points de prélèvements situés hors du bassin versant affectent la nappe de l'infratoarcien au niveau de son compartiment B. Ainsi, les analyses relatives à ce compartiment incluent ces prélèvements.

Phase 1 - Etat des lieux « usages »

Tableau 2: Infratoarcien - Bilan des prélèvements moyens (m3) sur la période 2000-2018.

	Eau potable	Irrigation	Industries*	Total prélèvements
А	111 693	1 202 432	0	1 314 125
В	0	724 013	0	724 013
С	0	0	0	0
D	158 411	111 478	0	269 889
Е	244 642	589 687	0	834 329
F	606 666	1 183 536	7 886	1 798 088
G	0	244 507	0	244 507
tot	1 121 411	4 055 653	7 886	5 184 951

^{*} Prélèvements effectués directement dans le milieu naturel (= hors réseau d'eau potable)

Rappel : les prélèvements réalisés hors bassin mais affectant le compartiment B sont comptabilisés dans le tableau ci-dessus.

Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

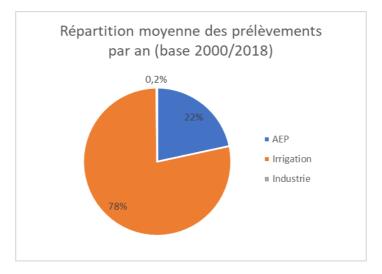


Figure 2 : Infratoarcien - Répartition des prélèvements à l'échelle annuelle

L'InfraToarcien se caractérise par des prélèvements majoritairement à destination de l'irrigation. On identifie une présence modérée de prélèvements pour l'eau potable ainsi qu'un faible impact de l'industrie.

Phase 1 - Etat des lieux « hydrologie »

Sur les 20 dernière années, la situation générale de la nappe infra-Toarcienne est équilibrée, voire positive dans certains compartiments (voir figures suivantes). A l'échelle pluriannuelle, le rapport entre les volumes exportés de la nappe et la recharge semble donc globalement équilibré.

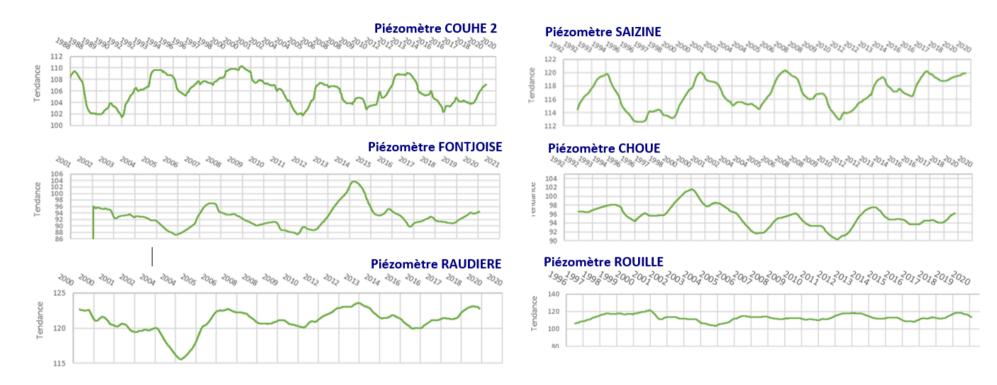


Figure 3 : Infratoarcien – Tendance du niveau de la nappe de l'Infratoarcien au droit des divers indicateurs piézométriques

Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

Phase 2 – Seuils de gestion et volumes prélevables tous usages confondus (= gestion structurelle)

Tableau 3: Infratoarcien – Volumes prélevables tous usages confondus, POE et POH

Compartiment	Volume prélevable (m3/an)	Evolution en % par rapport au volume prélevé moy. 2010/2018	PMNA5 2010-2018 (POE), (en mètres NGF)	PMM5 _{mars} (POH), (en mètres NGF)
Α	1 290 000	0	80.83	95.10
В	755 000	5	111.65	117.54
D	222 000	0	95.19	107.83
E	762 000	0	91.04	93.29
F	1 798 000	11	117.91	122.95
G	244 500	21	105.68	114.71
Total	5 071 500	5	-	-

PMNA5 = piézométrie moyenne mensuelle minimum obtenue sur une année, dont la fréquence de retour est de 5 ans, c'est-à-dire non dépassée 8 années sur 10.

PMM5 = niveau piézométrique moyen mensuel d'un mois donné (ici, mars) n'étant pas respecté en moyenne une année sur 5

Rappel : Le volume prélevable défini pour le compartiment B s'appliquent aux prélèvements hors bassins associables à ce dernier.

Phase 3 – Répartition des volumes prélevables entre usages réglementés (= gestion structurelle) et définition des objectifs de crise (= gestion conjoncturelle)

Gestion structurelle

VP = Volume Prélevable

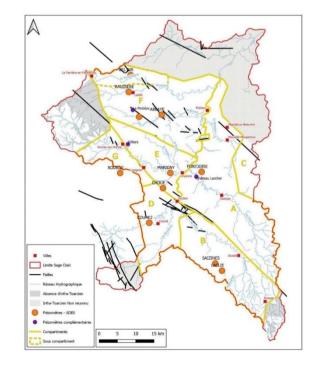
Pmoy 10-18 = Prélèvements moyens sur la période 2010/2018

Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

Tableau 4: Infratoarcien – Répartition des volumes prélevables entre les usages réglementés (eau potable: AEP; irrigation: IRR; Industrie: IND)

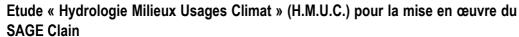
Compartiment	<u>Usage</u>	Volume prélevable m3	Prélèvements moyens 2010- 2018
	TOTAL	1 290 000	1 289 337
	Eau potable	181 351	190 895
А	Irrigation	1 043 520	1 098 442
	Industrie	0	0
	Non affecté	65 129	-
В	TOTAL	755 000	719 444
	Eau potable	0	0
	Irrigation	683 472	719 444
	Industrie	0	0
	Non affecté	71 528	-

Compartiment	<u>Usage</u>	Volume prélevable m3	Prélèvements moyens 2010-2018
	TOTAL	222 000	221 893
	Eau potable	125 767	132 386
D	Irrigation	85 031	89 506
	Industrie	0	0
	Non affecté	11 202	-
	TOTAL	762 000	761 436
	Eau potable	255 645	269 100
E	Irrigation	467 720	492 337
	Industrie	0	0
	Non affecté	38 636	-


Etude « Hydrologie Milieux Usages Climat » (H.M.U.C.) pour la mise en œuvre du SAGE Clain

Compartiment	<u>Usage</u>	Volume prélevable m3	Prélèvements moyens 2010-2018
	TOTAL	1 798 000	1 617 601
	Eau potable	965 136	556 533
F	Irrigation	819 333	1 046 826
	Industrie	13 530	14 242
	Non affecté	0	-

Compartiment	<u>Usage</u>	Volume prélevable m3	Prélèvements moyens 2010-2018
	TOTAL	244 500	202 517
	Eau potable	0	0
G	Irrigation	192 391	202 517
	Industrie	0	0
	Non affecté	52 109	-



Phase 3 – Propositions d'actions et d'adaptation du SDAGE et du SAGE

Gestion de crise (= gestion conjoncturelle)

Les piézométries objectives d'étiage et piézométries objectives hivernales correspondent aux situations piézométriques à ne pas franchir 8 années sur 10. Ces indicateurs sont assimilables à des seuils d'alerte.

La définition d'une piézométrie de crise pour l'infratoarcien s'appuie sur :

- La cote de dénoyage de l'aquifère additionnée de la cote de rabattement liée à l'opération de l'ouvrage
- La dynamique de vidange connue de l'aquifère en ce point.

Ceci permet de définir un seuil permettant d'anticiper et de contrer le dénoyage de la nappe.

Tableau 5 : Infratoarcien – seuils de gestion piézométrique proposés

	Cote piézométrique (m NGF)		
	Alerte de fin de recharge	Alerte d'étiage	Crise d'étiage
Compartiment - indicateur	Alerte Printemps	Alerte	Crise
A - Fontjoise	95.1	80.83	79.23
B - Saizines	117.54	111.65	109.65
D - Couhe 2	107.83	95.19	92.45
E - Choué	93.29	91.04	89.92
F - Raudière	122.95	117.91	115.09
G - Rouillé	114.71	105.68	101.68

