

Etude Hydrologie Milieux Usages Climat Vienne - Vienne Tourangelle

Phase 2 | Synthèse pédagogique

Juin 2025

Financé par

Table des matières

Ta	able des mat	tières	2
1	Préambu	ıle	11
	1.1 Prés	sentation du territoire d'étude	11
	-	ectifs de l'étude	
		oulement de la mission	
2		de lecturee la sectorisation du périmètre d'étudee	
3		croisée « HMUC »	
J	•	nscription des débits biologiques définis en phase 1 au niveau de l'exutoire des u	
	gestion19		
		e en perspective des 4 volets	
4	•	thèse des résultats pour chaque unité de gestionde la gestion structurelle	
	•	-	
	4.1 Prin 4.1.1	cipes et méthodologie Calcul des débits objectifs d'étiage et des volumes prélevables – Scénario d'obje 36	
	4.1.2	Précisions de certains choix effectués dans la détermination des DOE	38
	4.2 Dét	ermination des débits et volumes de références – Scénario d'objectivation	39
	4.2.1	Synthèse des résultats du scénario d'objectivation de la gestion structurelle	39
	4.2.2	Evolutions futures	45
		thodologie développée pour la définition de la gestion structurelle adaptée aux UG e	
	4.3.1	Scénarios de gestion développés par UG en déficit quantitatif	
	4.3.2	Méthodologie de l'analyse multicritère de l'impact d'un scénario de gestion str 54	ucturelle
		narios de gestion structurelle pour les UG en déficit quantitatif et résultats des	•
5		ion de répartition du volume prélevable entre les usages	
	5.1.1	UG 1 – Vienne amont	
	5.1.2	UG 2 – Combade	
	5.1.3	UG 3 – Maulde	
	5.1.4	UG 4 – Taurion amont	62
	5.1.5	UG 5 – Vige	63
	5.1.6	UG 6 – Taurion aval	
	5.1.7	UG 7 – Vienne entre la Maulde et l'Aixette	65
	5.1.8	UG 8 – Ruisseau du Palais	66
	5.1.9	UG 9 – Briance	67

	5.1.1	.0 UG 10 – Aurence	68
	5.1.1	1 UG 11 – Aixette	69
	5.1.1	UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles	71
	5.1.1	.3 UG 13 – Glane	72
	5.1.1	.4 UG 14 – Gorre	73
	5.1.1	.5 UG 15 – Graine	74
	5.1.1	.6 UG 16 – Goire	76
	5.1.1	.7 UG 17 – Issoire	77
	5.1.1	18 UG 18 – Vienne entre l'Issoire et la Grande Blourde	79
	5.1.1	9 UG 19 – Grande Blourde	80
	5.1.2	20 UG 20 – Petite Blourde	82
	5.1.2	21 UG 21 – Vienne à Chauvigny	87
	5.1.2	22 UG 22 – Dive	88
	5.1.2	23 UG 23 – Vienne à la confluence avec le Clain	89
	5.1.2	24 UG 24 – Ozon	90
	5.1.2	25 UG 25 – Envigne	91
	5.1.2	26 UG 26 – Vienne entre le Clain et la Creuse	96
	5.1.2	27 UG 27 – Vienne aval	97
	5.1.2	28 UG 28 – Bourouse	98
	5.1.2	29 UG 29 – Manse	104
	5.1.3	30 UG 30 – Veude	105
	5.1.3	31 UG 31 – Négron	113
6	Cond	clusions et suite de l'étude	114
7	Défi	nitions, glossaire et acronymes	116
	7.1	Définitions	
	7.2	Glossaire	
	7.3	Acronymes	131

Liste des figures

Figure 1 : Délimitation du périmètre du SAGE Vienne sur le bassin versant de la Vienne 11
Figure 2 : Délimitation du périmètre du bassin de la Vienne Tourangelle sur le territoire du SAGE Vienne
Tourangelle
Figure 3. Altitudes moyennes du bassin versant de la Vienne et de la Vienne Tourangelle
Figure 4. Carte de représentation des 31 unités de gestion validées sur les territoires des SAGEs Vienne et
Vienne Tourangelle (source des données : EPTBV Vienne)18
Figure 5. Représentation des 31 débits biologiques qui seront déterminés sur le territoire du SAGE Vienne
et du SAGE Vienne Tourangelle (en bleu selon le protocole ESTIMHAB et en rouge selon la méthode d'un
modèle hydraulique)
Figure 6 : Présentation des résultats de la gestion structurelle et identification des UG en déficit quantitatif
suite à l'application du scénario d'objectivation de phase 240
Figure 7 : Présentation des UG qui seraient en déficit quantitatif sous l'impact du changement climatique
à l'horizon 2050 en appliquant le scénario d'objectivation de phase 246
Figure 8 : Comparaison de l'application du scénario d'objectivation (à gauche) et du scénario diagnostic (à
droite) – Exemple de la Veude (UG 30)
Figure 9 : Comparaison des VP déterminés entre le scénario « Diagnostic » et le scénario « Agrégation
temporelle maximisée » – Exemple de la Veude (UG 30)50
Figure 10 : Comparaison des VP déterminés entre le scénario « Diagnostic » et le scénario « Agrégation
temporelle seuillée » – Exemple de la Veude (UG 30)51
Figure 11 : Présentation de l'application du scénario « Agrégation temporelle maximisée avec stockage »
– Exemple de la Veude (UG 30)52
Figure 12 : Présentation de l'application du scénario « Agrégation temporelle seuillée avec stockage » –
Exemple de la Veude (UG 30)53
Figure 13 : Exemple de représentation graphique du débit moyen journalier, du débit moyens mensuel et
du module d'un cours d'eau sur une année donnée117
Figure 14 : Exemple de représentation graphique du VCN30 et du QMNA d'un cours d'eau donné sur une
année donnée
Figure 15 : Représentation schématique du niveau piézométrique dans un contexte de nappe libre
(gauche) et de nappe captive (droite)

Liste des tableaux

Tableau 1 : Départements communes et superficies sur le territoire du SAGE Vienne	11
Tableau 2 : Départements, communes et superficies sur le territoire du SAGE Vienne	12
Tableau 3 : Unités de gestions proposées dans la sectorisation sur le territoire Vienne - Vienne Tourang	_
Tableau 4 : Gammes de débits biologiques déterminées pour la période de basses eaux à la sta	
microhabitat et rapportées aux stations hydrométriques et à l'aval de chaque UG	
Tableau 5 – Typologies de l'hydrologie des cours d'eau rencontrées en période estivale (avril-octobre	-
Tableau 6 : Typologies de l'hydrologie de l'ensemble des UG du territoire sur la période 2000-2019 e	
projection à l'horizon 2050	
Tableau 7 : Synthèse des analyses croisées sur les unités de gestion des territoires des SAGE Vienn Vienne tourangelle	
Tableau 8 : Synthèse des DOE définis dans le cadre du scénario d'objectivation	
rableau 9 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de janvi	
avril	
Tableau 10 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de mai à ت	
, , , , , , , , , , , , , , , , , , , ,	
Fableau 11 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de septen	
décembre	
Fableau 12 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	
JG 1 – Vienne amont	
Fableau 13 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 1 – Vienne amont	
Tableau 14 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	
JG 2 – Combade	60
Fableau 15 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 2 – Combade	60
Tableau 16 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	ux –
JG 3 – Maulde	61
Tableau 17 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 3 – Maulde	
Tableau 18 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	ux –
JG 4 – Taurion amont	62
Tableau 19 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 4 – Taurion amont	62
Tableau 20 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	ux –
JG 5 – Vige	63
Tableau 21 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 5 – Vige	63
Tableau 22 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	ux –
JG 6 – Taurion aval	64
Tableau 23 : Répartition des volumes prélevables par usage et par mois sur la période hors basses ea	ıux –
JG 6 – Taurion aval	
Tableau 24 : Répartition des volumes prélevables par usage et par mois sur la période de basses ea	ux –
JG 7 – Vienne entre la Maulde et l'Aixette	65

Tableau 25 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 7 – Vienne entre la Maulde et l'Aixette65
Tableau 26 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 8 – Ruisseau du Palais66
Tableau 27 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 8 – Ruisseau du Palais
Tableau 28 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 9 – Briance
Tableau 29 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 9 – Briance
Tableau 30 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 10 – Aurence
Tableau 31 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 10 – Aurence
Tableau 32 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 11 – Aixette
Tableau 33 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 11 – Aixette
Tableau 34 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 11 – Aixette
Tableau 35 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 11 – Aixette70
Tableau 36 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles71
Tableau 37 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles71
Tableau 38 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 13 – Glane
Tableau 39 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 13 – Glane72
Tableau 40 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 14 – Gorre
Tableau 41 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 14 – Gorre
Tableau 42 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 15 – Graine
Tableau 43 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 15 – Graine74
Tableau 44 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 15 – Graine
Tableau 45 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 15 – Graine
Tableau 46 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 16 – Goire
Tableau 47 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 16 – Goire

Tableau 48 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 17 – Issoire
Tableau 49 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 17 – Issoire
Tableau 50 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 17 – Issoire
Tableau 51: Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 17 – Issoire
Tableau 52 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 18 – Vienne entre l'Issoire et la Grande Blourde
Tableau 53 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 18 – Vienne entre l'Issoire et la Grande Blourde
Tableau 54 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 19 – Grande Blourde 80
Tableau 55 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 19 – Grande Blourde 80
Tableau 56 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 19 – Grande Blourde 81
Tableau 57 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 19 – Grande Blourde 81
Tableau 58 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 20 – Petite Blourde
Tableau 59 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 20 – Petite Blourde
Tableau 60 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 20 – Petite Blourde
Tableau 61 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux —
UG 20 – Petite Blourde
Tableau 62 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 20 – Petite Blourde
Tableau 63 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux —
UG 20 – Petite Blourde
Tableau 64 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux —
UG 20 – Petite Blourde
Tableau 65: Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux —
UG 20 – Petite Blourde
Tableau 66 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux —
UG 20 – Petite Blourde
Tableau 67: Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux —
UG 20 – Petite Blourde
Tableau 68 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 21 – Vienne à Chauvigny
Tableau 69 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 21 – Vienne à Chauvigny
Tableau 70 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 22 – Dive Erreur ! Signet non défini.

Tableau	71 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 22 –	Dive Erreur ! Signet non défini.
Tableau	72 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 23 –	Vienne à la confluence avec le Clain
Tableau	73 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 23 –	Vienne à la confluence avec le Clain
Tableau	74 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 24 –	Ozon
Tableau	75 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Ozon90
Tableau	76 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Envigne
Tableau	77 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 25 –	Envigne
	78 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Envigne
Tableau	79 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Envigne92
	80 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Envigne
	81 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Envigne
	82 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Envigne
	83 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Envigne
	84 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Envigne
	85 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Envigne
	86 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Vienne entre le Clain et la Creuse96
	87 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Vienne entre le Clain et la Creuse
	88 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Vienne aval97
	89 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Vienne aval97
	90 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Bourouse
	91 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
	Bourouse
	92 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
	Bourouse
	93 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 28 –	Bourouse

Tableau 94 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 28 – Bourouse	0
Tableau 95 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux	_
UG 28 – Bourouse	0
Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – U	G
28 – Bourouse	1
Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux	_
UG 28 – Bourouse	
Tableau 96 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 28 – Bourouse	
Tableau 97 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux	
UG 28 – Bourouse	
Tableau 98 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 28 – Bourouse	
Tableau 99 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux	
UG 28 – Bourouse	
Tableau 100 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 29 – Manse	
Tableau 101 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
–UG 29 – Manse	
Tableau 102 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 30 – Veude	
Tableau 103 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
– UG 30 – Veude	
Tableau 104 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 30 – Veude	
Tableau 105 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
– UG 30 – Veude	
Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – U	
30 – Veude	
Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux	
UG 30 – Veude	
Tableau 106 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 30 – Veude	
Tableau 107 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
– UG 30 – Veude	
Tableau 108 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 30 – Veude	
Tableau 109 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
– UG 30 – Veude	
Tableau 110 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux	
UG 30 – Veude	
Tableau 111 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eau	
- UG 30 - Veude	
Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – U	
30 – Veude	

Tableau 2 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –
UG 30 – Veude
Tableau 112 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 30 – Veude
Tableau 113 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux
– UG 30 – Veude
Tableau 114 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux –
UG 31 – Négron
Tableau 115 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux
–UG 31 – Négron 113

1 Préambule

1.1 Présentation du territoire d'étude

Les bassins versants de la Vienne et de la Vienne Tourangelle sont situés au centre ouest de la France. Le bassin de la Vienne (SAGE Vienne) s'étend du plateau des Millevaches sur lequel la Vienne prend sa source jusqu'à la confluence de la Vienne et de la Creuse sur une superficie de 7 061 km². Son périmètre a été arrêté le 30 juin 1995. Il comprend 310 communes réparties sur 6 départements (Corrèze, Creuse, Haute-Vienne, Charente, Vienne et Indre et-Loire) et 2 régions (majoritairement en Nouvelle Aquitaine et en partie en région Centre Val-de-Loire).

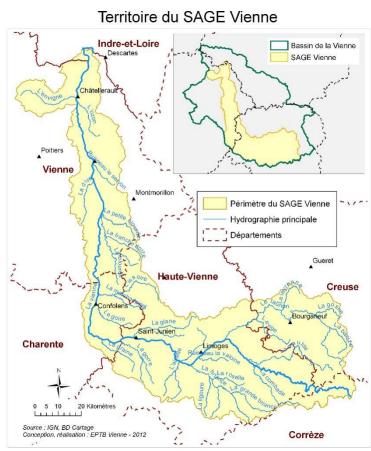


Figure 1 : Délimitation du périmètre du SAGE Vienne sur le bassin versant de la Vienne

Département	Répartition superficielle (km²)	Nombre de communes concernées
Charente	610	23
Corrèze	203	9
Creuse	1089	52
Indre et Loire	18	3
Vienne	1983	96
Haute-Vienne	3158	127
Total	70361	310

Tableau 1 : Départements communes et superficies sur le territoire du SAGE Vienne

Le bassin versant de la Vienne Tourangelle (SAGE Vienne Tourangelle) s'étend de la confluence de la Vienne avec la Creuse au niveau du Bec des deux eaux à Ports-sur-Vienne jusqu'à la confluence de la Vienne dans la Loire à Candes-Saint-Martin, sur une surface de 1 310 km². Il concerne principalement la région Centre-Val de Loire, avec le département de l'Indre-et-Loire et la région Nouvelle-Aquitaine avec le département de la Vienne. La région Pays-de-la-Loire et le département du Maine-et-Loire sont concernés à la marge par le bassin de la Vienne Tourangelle. Un total de 107 communes compose le territoire. Il représente 6% du bassin de la Vienne (21 160 km²) et 1% du bassin de la Loire.

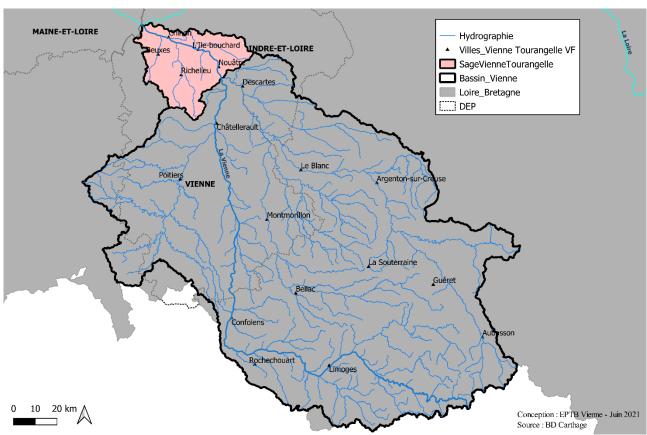


Figure 2 : Délimitation du périmètre du bassin de la Vienne Tourangelle sur le territoire du SAGE Vienne Tourangelle

REGIONS	DEPARTEMENTS	COMMUNES	Répartition (%)	SUPERFICIE (km²)	Répartition (%)
Centre Val-de- Loire	Indre-et-Loire	72	67	945,15	72
Nouvelle- Aquitaine	Vienne	34	32	366,51	28
Pays de la Loire	Maine-et-Loire	1	1	0,001	<1
3 régions	3 départements	107	100	1 312	100

Tableau 2 : Départements, communes et superficies sur le territoire du SAGE Vienne

Le bassin de la Vienne est caractérisé par un relief marqué. Cette rivière prend sa source en Corrèze, sur le plateau de Millevaches, à partir de quatre à cinq petits ruisseaux, au pied du mont Audouze, à une altitude comprise entre 860 et 895 mètres, entre les communes de Saint-Setiers, Millevaches et Peyrelevade. Après avoir parcouru 372 kilomètres, elle se jette dans la Loire à Candes-Saint-Martin (37) à 33 mètres d'altitudes. Cela représente un dénivelé de 862 mètres entre la source et la confluence. La

rupture de relief entre l'amont et l'aval d'une ligne Confolens-Montmorillon est bien visible et marque la transition entre le Massif central, granitique, et les zones sédimentaires du Sud du Bassin Parisien, dans le secteur du seuil du Poitou.

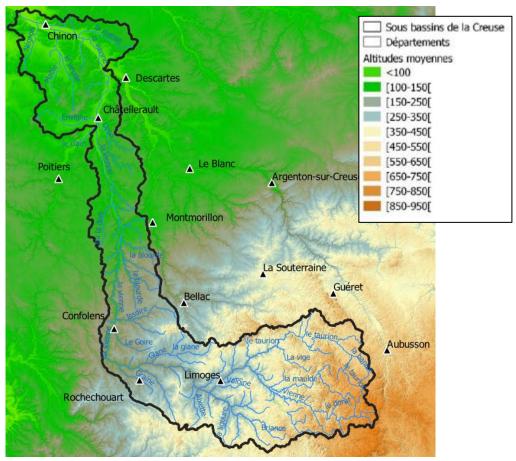


Figure 3. Altitudes moyennes du bassin versant de la Vienne et de la Vienne Tourangelle

1.2 Objectifs de l'étude

L'étude « Hydrologie Milieux Usages Climat » (HMUC), basée sur le fonctionnement quantitatif des bassins versants de la Vienne et de la Vienne Tourangelle, s'inscrit dans le cadre du processus de révision du SAGE Vienne (initié en 2022), et de l'élaboration du SAGE Vienne Tourangelle (2022-2026). Les quatre volets Hydrologie, Milieux, Usages et Climat seront traités intégralement dans la présente étude HMUC Vienne et Vienne Tourangelle. La mutualisation des moyens techniques entre ces deux SAGE et le savoirfaire acquis par l'EPTB Vienne dans le cadre des études HMUC Creuse et Clain, seront mis à profit pour aborder l'étude efficacement et avec une cohérence hydrographique pertinente.

Cette étude vise à évaluer la ressource en eau disponible et à organiser sa gestion en vue d'atteindre un équilibre entre les besoins en eau par usage et le maintien du bon fonctionnement des milieux aquatiques. L'objectif global sera d'obtenir des règles de gestion cohérentes, en concertation avec les acteurs locaux en s'appuyant sur des choix d'indicateurs et la fixation de seuils parfaitement argumentés.

Sur la base de cette étude, les Commissions Locales de l'Eau (CLE) des SAGE Vienne et Vienne Tourangelle devront donc être en mesure de définir des volumes prélevables et de définir ou réviser si besoin les valeurs d'objectifs d'étiage, actuelles ou complémentaires, du SDAGE (de débits et/ou piézométries). Si cela apparait justifié, un ajustement des débits d'alerte et de crise et le renforcement des suivis existants sera également proposé.

Les objectifs précis de l'étude sont les suivants :

- Définir les unités de gestion cohérentes pour l'élaboration des modalités de gestion quantitative;
- Identifier les lacunes de connaissances (hydrologie, pression...);
- Analyser la pertinence de l'ensemble des indicateurs hydrologiques et piézométriques du dispositif de gestion structurelle, la position des points nodaux ainsi que du dispositif de gestion de crise sur le bassin versant ;
- Proposer, selon les résultats de cette analyse, une adaptation des valeurs des débits et piézométries objectifs d'étiage du SDAGE sur le bassin, ainsi que des seuils piézométriques et hydrométriques de gestions de crise, en considérant notamment les éléments du SDAGE et la définition du seuil de crise proposée par la circulaire du ministère de la transition écologique solidaire du 18 mai 2011;
- Définir plus précisément la part des différents facteurs d'influence sur les débits des cours d'eau situés dans les bassins de la Vienne et de la Vienne Tourangelle pour organiser une gestion adaptée qui visera au respect des débits minimums objectifs, faire la part entre les évolutions structurelles (naturelles) de débits sur le réseau hydrographique et les influences anthropiques pour aboutir à la définition de volumes prélevables et de propositions d'encadrement associées;
- Détailler des propositions de renforcement du suivi hydrologique et piézométrique si nécessaire.

1.3 Déroulement de la mission

Cette étude H.M.U.C se décompose en 3 phases.

Phase 1 : Etat des lieux / Synthèse et actualisation des éléments « H.M.U.C. » :

- Hydrologie: description et analyse des différentes composantes du régime hydrologique
 reconstitution des régimes hydrologiques naturels (non influencés par les actions anthropiques);
- o Milieux : connaissance de l'état et analyse des besoins des milieux aquatiques ;
- Usages : connaissance des usages, de leur évolution constatée et prévisible, analyse des solutions d'économie d'eau (Utilisation strictes des données existantes);
- Climat : détermination de l'évolution quantitative prévisible de la ressource, des milieux et de leurs besoins en eau, et des usages anthropiques de l'eau (Utilisation strictes des données existantes).

Phase 2 : Diagnostic / Croisement des 4 volets Hydrologie, Milieux, Usages et Climat :

- o Rapprochement et croisement des 4 volets « H.M.U.C. » ;
- Ajuster les débits objectifs d'étiage et/ou les niveaux objectifs d'étiage (DOE et/ou NOE);
- o Définir les volumes prélevables par unité de gestion répartis par usage

Phase 3: Propositions d'actions et d'adaptation éventuelles:

- o Proposition de gestion de crise
- o Propositions d'actions

Le présent document constitue une synthèse des objectifs visés, des méthodes d'analyse appliquées et des résultats obtenus dans le cadre de la phase 2 :

- ▶ Diagnostic / Croisement des 4 volets Hydrologie, Milieux, Usages et Climat
- ► Définition de la gestion structurelle à mettre en place, au niveau de chaque unité de gestion, en période de basses eaux

L'objectif de cette synthèse est de fournir un premier axe de lecture de ces éléments, la lecture pouvant être ensuite approfondie à l'aide du rapport complet de phase 2.

1.4 Clé de lecture

Le présent document se veut aussi pédagogique que possible. Pour en faciliter la lecture, les précisions suivantes sont apportées :

- La section 7 est dédiée à la définition des termes techniques employés, à un glossaire et à une liste des acronymes. Ces éléments permettent d'accompagner la lecture du présent document;
- Des références à d'autres documents de l'étude sont parfois présentées en vert, afin d'assurer la compréhension de certains concepts-clé.

Pour approfondir sa connaissance sur les différentes méthodes employées et résultats obtenus, le lecteur est invité à consulter les rapports spécifiquement rédigés pour chaque phase de l'étude.

2 Rappel de la sectorisation du périmètre d'étude

La première étape de la phase 1 consiste à déterminer des unités de gestion (UG) dans lesquelles il serait judicieux d'apporter des connaissances sur la ressource en eau et d'améliorer la gestion quantitative de chacun de ces territoires composant les bassins versants de la Vienne et de la Vienne Tourangelle. C'est à l'échelle de ces UG que les résultats des analyses de l'étude HMUC seront présentés et que des débits biologiques pourront être déterminés.

Une sectorisation du territoire d'étude a déjà été présentée lors de la première commission thématique le 15 novembre 2022. Ces 31 sous-bassins versants correspondent aux UG sur lesquelles une stratégie de gestion quantitative de la ressource en eau sera définie dans la phase 3 de l'étude. Les sous-bassins versants ont été définis selon les critères suivants :

- ► La cohérence avec les masses d'eau superficielles décrites dans le SDAGE Loire Bretagne ;
- La cohérence avec les masses d'eau souterraines décrites dans le SDAGE Loire-Bretagne ;
- La proximité avec une station hydrométrique ;
- La disponibilité d'un piézomètre représentatif sur le sous bassin concerné ;
- La cohérence des usages de l'eau.

N°UG	Nom UG	Surface (km²)
1	La Vienne Amont	454
2	La Combade	190
3	La Maulde	355
4	Le Taurion à Pontarion	544
5	La Vige	133
6	Le Taurion aval	350
7	La Vienne de la confluence avec la Maulde à la confluence avec l'Aurence	356
8	Le Ruisseau du Palais	75
9	La Briance	617
10	L'Aurence	95
11	L'Aixette	162
12	La Vienne de la Confluence avec l'Aurence jusqu'à Availles	489
13	La Glane	311
14	La Gorre	207
15	La Graine	139
16	Le Goire	159
17	L'Issoire	285
18	La Vienne entre l'Issoire et la Grande Blourde	180
19	La Grande Blourde	300
20	La Petite Blourde	103
21	La Vienne à Chauvigny	392
22	La Dive	166
23	La Vienne à la confluence avec le Clain	170
24	L'Ozon	297
25	L'Envigne	254
26	La Vienne entre le Clain et la Creuse	265
27	La Vienne Aval	440
28	La Bourouse	72
29	La Manse	194
30	La Veude	438
31	Le Négron	166

Tableau 3 : Unités de gestions proposées dans la sectorisation sur le territoire Vienne - Vienne Tourangelle

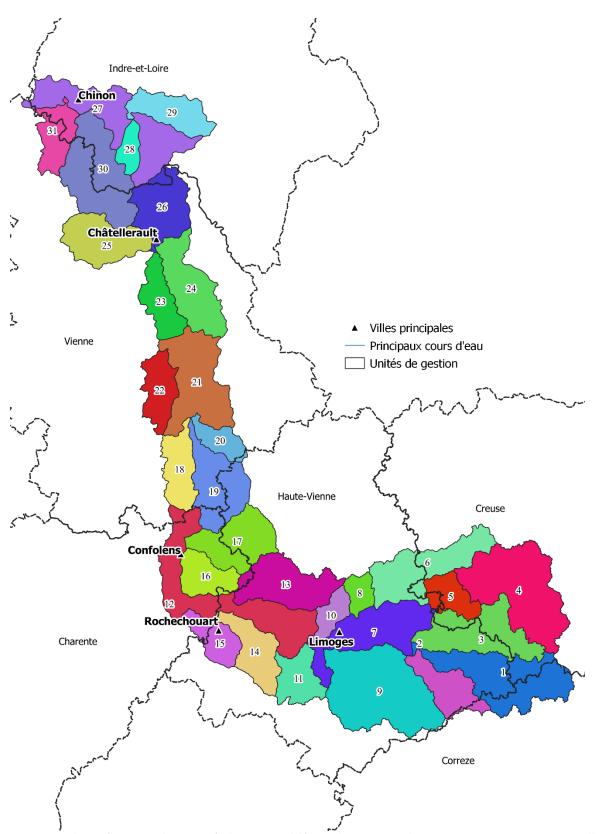


Figure 4. Carte de représentation des 31 unités de gestion validées sur les territoires des SAGEs Vienne et Vienne Tourangelle (source des données : EPTBV Vienne).

3 Analyse croisée « HMUC »

3.1 Transcription des débits biologiques définis en phase 1 au niveau de l'exutoire des unités de gestion

Pour pouvoir travailler à l'échelle des unités de gestion définies dans le cadre de la présente étude, il est nécessaire de disposer des analyses de chaque volet de phase 1 au niveau de l'exutoire de ces dernières. Or, les débits biologiques ne sont pas systématiquement définis à ce niveau (parfois plus en amont et proches des stations hydrométriques).

Les débits biologiques estivaux sont définis au niveau des stations ESTIMHAB ou EVHA (axe Vienne avec l'approche par modèle hydraulique), qui peuvent se situer à proximité de la station hydrométrique de référence des unités de gestion, à proximité de leur exutoire ou encore à un autre point du bassin versant lorsque les sites éligibles sont rares. Il convient donc, dans le cas des unités de gestion dont les débits biologiques n'ont pas été établis à proximité de leur exutoire, de retranscrire ces débits biologiques au niveau de cet exutoire selon un rapport des surfaces de bassin versant (Erreur! Source du renvoi i ntrouvable.).

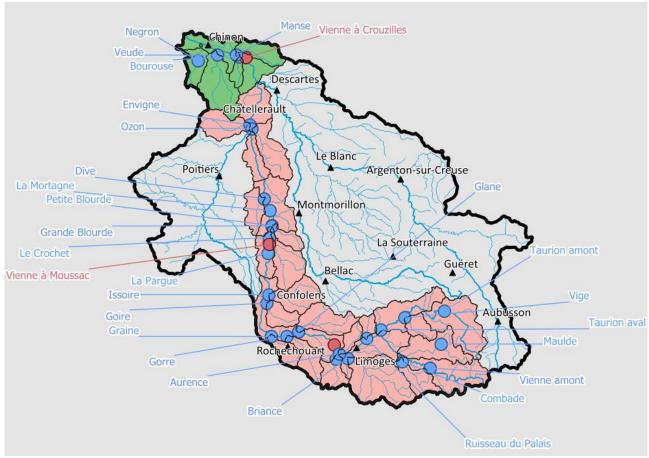


Figure 5. Représentation des 31 débits biologiques qui seront déterminés sur le territoire du SAGE Vienne et du SAGE Vienne Tourangelle (en bleu selon le protocole ESTIMHAB et en rouge selon la méthode d'un modèle hydraulique)

UG	Unité de gestion	Gamme de débits déterminées à la station microhabitat (L/s)	Gamme de débits déterminées à la station Hydrométrique (L/s)	Gamme de débits déterminées à l'aval de l'UG (L/s)
UG 1	Vienne amont	1200 - 2200	1213 - 2224	2137 - 3918
UG 2	Combade	700 - 900	648 - 833	711 - 914
UG 3	Maulde	430 - 650	689 - 1041	1351 - 2042
UG 4	Taurion à Pontarion	750 – 1600	691 – 1475	969 – 2067
UG 5	Vige	400 – 640	400 - 640	400 - 640
UG 6	Taurion aval	1000 - 2000	1000 - 2000	1000 - 2000
UG 8	Ruisseau du Palais	160 - 300	-	162 - 304
UG 9	Briance	1100 – 1700	1066 – 1648	1102 - 1703
UG 10	Aurence	190 - 350	176 - 324	192 – 354
UG 11	Aixette	80 – 200	83 - 208	83 – 208
UG 12	Vienne entre Aixe- sur-Vienne et l'Issoire	10 000 – 12 000	10 000 – 12 000	13 560 – 16 270
UG 13	Glane	320 – 650	296 - 602	320 – 650
UG 14	Gorre	200 – 330	180 - 297	200 – 330
UG 15	Graine	115 – 300	-	116 – 302
UG 16	Goire	80 - 200	67 - 169	80 – 200
UG 17	Issoire	125 - 300	116 - 279	125 – 300
UG 18	Pargue	30 - 60	-	30 - 60
UG 18	Crochatière	15 - 35	-	15 - 35
UG 18	Crochet	45 – 80	-	45 – 80
UG 18	Vienne entre l'Issoire et la Grande Blourde	17 000 – 21 000	17 000 – 21 000	17 000 – 22 000
UG 19	Grande Blourde	120 – 250	120 - 250	120 – 250
UG 20	Petite Blourde	40 – 100	40 - 100	40 - 100
UG 21	Mortagne	40 – 80	-	40 – 80
UG 22	Dive	60 – 120	60 - 120	60 – 121
UG 24	Ozon	110 – 200	98 - 178	110 – 200
UG 25	Envigne	65 – 110	62 - 105	65 – 110
UG 27	Vienne aval	30 000 – 36 600	30 000 – 36 600	30 570 – 37 290
UG 28	Bourouse	40 – 80	-	40 – 80
UG 29	Manse	145 – 260	145 - 260	145 – 260
UG 30	Veude	250 – 410	242 - 397	258 – 423
UG 31	Négron	21 – 30	-	90 – 130

Tableau 4 : Gammes de débits biologiques déterminées pour la période de basses eaux à la station microhabitat et rapportées aux stations hydrométriques et à l'aval de chaque UG

3.2 Mise en perspective des 4 volets

Au niveau de chaque unité de gestion du territoire, on procède :

o Au rappel des conclusions de chaque volet de phase 1 :

Débits biologiques identifiés et contexte environnemental, milieux de qualité particulière ;

Analyse des usages, de leur effet individuel et cumulé;

Analyse des régimes influencés, désinfluencés et de l'écart entre les deux ;

Analyse de l'évolution future à attendre concernant débits.

A la mise en perspective des gammes de débits biologiques obtenues avec l'hydrologie influencée
 et désinfluencée (sur l'ensemble du cycle hydrologique), actuelle et future :

Identification de la typologie de la situation rencontrée sur la période d'étude (hydrologie naturellement favorable, contraignante ou très contraignante d'une part, et niveau d'impact des usages d'autre part) ; voir tableau ci-dessous. Analyses des causes de dysfonctionnement (usages, aménagement des cours d'eau, changement climatique...) ;

Perspectives d'évolution : analyse des impacts cumulés sur le fonctionnement des milieux dus au changement climatique seul, puis au changement climatique et aux évolutions d'usages anthropiques futurs (Scénario tendanciel) ;

A la classification des unités de gestion par priorité d'intervention.

Dans le cadre de la présente étude, nous nous appuyons uniquement sur le débit biologique estival d'avril à octobre (période d'étiage). De plus, on analysera le scénario tendanciel d'usages élaborés en phase 1 dans le volet « Usages ». Le Tableau 5 présente les différentes typologies rencontrées en période estivale (mai – octobre) en termes de satisfaction des besoins des milieux par l'hydrologie influencée et désinfluencée. Cette classification s'appuie sur les QMN5 influencés et désinfluencés et sur les gammes de débits biologiques estivales définies en phase 1, et permet d'identifier de manière immédiate, pour chaque unité de gestion et chaque mois considéré :

- L'état de fonctionnement écologique du cours d'eau ;
- ► Lorsque des dysfonctionnements sont relevés, la part associée aux activités anthropiques et lorsqu'il y a lieu, la part associée au fonctionnement naturel du cours d'eau.

Il est important de noter que l'ensemble des analyses croisées menées dans la suite de ce rapport tiennent compte de la réalimentation de la Vienne par le fonctionnement des barrages hydroélectriques situés sur la Maulde (UG 3) et le Taurion (UG 6) que ce soit en période actuelle (2000-2019) ou en période future (horizon 2050). Les besoins des milieux (débits biologiques) ont été fixés en prenant en compte la réalimentation de la Vienne, de ce fait la méthodologie de phase 2 a été appliquée de la même manière que pour les autres UG. Il est bien acquis que ce raisonnement n'est valable uniquement si la convention fixant la réalimentation de la Vienne reste inchangée. Une modification de cette dernière engendrerait une modification de la méthode de fixation des DOE. Par ailleurs, la détermination des seuils de gestion de crise tiendra compte de cette spécificité et sera réalisée en phase 3 en associant EDF (exploitant des barrages) aux discussions sur la méthodologie à développer sur l'axe Vienne.

Tableau 5 – Typologies de l'hydrologie des cours d'eau rencontrées en période estivale (avril-octobre)¹

Code	Symbologie	Description Description	encontrees en periode estivale (avril-octobre) ² Illustration
0		 Hydrologie naturellement favorable Pas d'impact quantitatif des usages anthropiques existants sur les milieux : DB seuil haut (DAR) non franchi 	250 200 200 200 200 200 200 200 200 200
1		 Hydrologie naturellement favorable pour les milieux Impact quantitatif des usages anthropiques existants sur les milieux : DB seuil haut (DAR) franchi par l'hydrologie influencée, mais pas par l'hydrologie désinfluencée DB seuil bas (DC) non franchi 	250 200 200 200 200 200 200 200 200 200
2		 Hydrologie naturellement favorable pour les milieux Impact quantitatif fort des usages anthropiques existants sur les milieux : DB seuil haut (DAR) et bas (DC) franchis par l'hydrologie influencée Pas de franchissement des DB par l'hydrologie désinfluencée 	250 200 200 200 200 200 200 200 200 200
3		 Hydrologie naturellement contraignante Usages anthropiques aggravent la situation : DB seuil haut (DAR) franchi par l'hydrologie influencée et désinfluencée; DB seuil bas (DC) non franchi 	250 200 200 200 200 200 200 200 200 200

¹ Dans les graphiques du tableau, DAR = Débit d'Accroissement du Risque = marge haute de la gamme de débits biologiques et DC = Débit Critique = marge basse de la gamme de débits biologiques. Il est recommandé au lecteur de se munir de ce tableau lors de la lecture de la suite du présent rapport, afin de faciliter cette dernière.

3.3 Synthèse des résultats pour chaque unité de gestion

Le tableau suivant synthétise les résultats de l'analyse croisée unité de gestion par unité de gestion.

Pour rappel, les analyses précédentes sont effectuées à l'exutoire des unités de gestion, les tensions et particularités en têtes de bassins n'y transparaissent pas forcément. Malgré cela le tableau suivant récapitule également les éléments clés de chaque volets « H-M-U-C » qui aident à adopter une vue d'ensemble sur les problématiques des unités de gestion.

On note une occurrence fréquente des codes de typologie 4 (en temps présent) et 5 (en temps futur), signifiant que l'hydrologie naturelle est respectivement contraignante à très contraignante, avec une aggravation systématique de la situation par les usages de l'eau. Cela indique que les prélèvements jouent un rôle important dans les déséquilibres quantitatifs observés, mais pas exclusif. En effet, le territoire est caractérisé par d'autres altérations relatives :

- ► A la morphologie des cours d'eau (recalibrage, curage), ce qui provoque une augmentation du débit nécessaire au bon fonctionnement des milieux par rapport à une morphologie naturelle ;
- ► A l'aménagement du territoire (disparition et déconnexion de zones humides, imperméabilisation, drainage), ce qui contribue à altérer le cycle hydrologique en limitant l'effet tampon des systèmes naturels ;
- ► Au changement climatique déjà engagé, qui provoque une diminution des débits naturels.

D'ailleurs, parmi les unités de gestion identifiées comme étant en situation de déficit quantitatif, certaines ne présentent aujourd'hui qu'un impact modéré des usages sur les débits (cas de la Graine, Vienne amont, Taurion à Pontarion, Glane).

Cela préfigure les réflexions qui devront être menées en phase 3, au cours de laquelle on mettra la restauration des cours d'eau et des zones humides au premier plan, afin de pouvoir envisager, dans le futur, une meilleure conciliation des besoins des usagers de l'eau et des milieux naturels.

Comme les travaux de restauration constituent un chantier de long-terme, en particulier sur des cours d'eau dont une large proportion du linéaire est altérée, et comme la réflexion à mener aujourd'hui doit se faire en fonction de la situation actuelle, un travail sur les usages de l'eau est à réaliser en priorité. Des actions concrètes de restauration doivent également être menées dès que possible afin d'alléger, petit à petit, les contraintes protées sur les prélèvements.

	Période 2000-2019											
	j	f	m	а	Ε	j	j	a	s	0	n	d
UG1 - Vienne amont	-	-	-	0	0	0	0	3	3	3	-	-
UG2 - Combade	-	-	-	0	0	0	0	0	3	3	-	-
UG3 - Maulde	-	-	-	0	0	0	0	0	0	0	-	-
UG4 - Taurion amont	-	-	-	0	0	0	3	3	5	4	-	-
UG5 - Vige	-	-	-	0	0	0	0	3	3	3	-	-
UG6 - Taurion aval	-	-	-	0	0	0	0	0	0	0	-	-
UG7 - Vienne entre Maulde et Aixette	-	-	-	0	0	0	0	0	0	0	-	-
UG8 - Ruisseau du Palais	-	-	-	0	0	0	0	3	3	3	-	-
UG9 - Briance	-	-	-	0	0	0	0	1	3	3	-	-
UG10 - Aurence	-	-	-	0	0	0	0	3	3	3	-	-
UG11 - Aixette	-	-	-	0	0	0	1	4	4	4	-	-
UG12 - Vienne entre Aixette et Availles	-	-	-	0	0	0	0	0	0	0	-	-
UG13 - Glane	-	-	-	0	0	0	1	3	4	3	-	-
UG14 - Gorre	-	-	-	0	0	0	1	4	5	4	-	-
UG15 - Graine	-	-	-	0	0	0	3	4	5	3	-	-
UG16 - Goire	-	-	-	0	0	0	1	4	5	3	-	-
UG17 - Issoire	-	-	-	0	0	0	0	1	3	1	-	-
UG18 - Vienne entre Issoire et Grande Blourde	-	-	-	0	0	0	0	3	1	0	-	-
UG19 - Grande Blourde	-	-	-	0	0	0	3	4	5	4	-	-
UG20 - Petite Blourde	-	-	-	0	0	1	4	4	5	4	-	-
UG22 - Dive	-	-	-	0	0	0	1	1	1	1	-	-
UG24 - Ozon	-	-	-	0	0	0	1	1	1	1	-	-
UG25 - Envigne	-	-	•	0	0	0	0	0	3	3	•	•
UG27 - Vienne aval	-	-	•	0	0	0	0	1	0	0	•	•
UG28 - Bourouse	-	-	-	0	0	1	4	4	5	5	1	-
UG29 - Manse	-	-	-	0	0	1	1	3	3	3	-	-
UG30 - Veude	-	-	-	0	0	0	3	5	5	5	1	-
UG31 - Négron	-	-	-	0	0	0	3	5	5	5	1	-

	L	_	Pe	éri	od	e 2	204	10-	20	59		
	j	f	m	a	m	j	j	a	s	0	n	d
UG1	-	-	-	0	0	0	0	3	3	3	-	-
UG2	-	-	-	0	0	0	0	1	4	5	-	-
UG3	-	-	-	0	0	0	0	0	0	0	-	-
UG4	-	-	-	0	0	3	3	4	5	5	-	-
UG5	-	-	-	0	0	0	3	3	5	5	-	-
UG6	-	-	-	0	0	0	0	0	0	1	-	-
UG7	-	-	-	0	0	0	0	0	0	0	-	-
UG8	-	-	•	0	0	0	3	3	5	33	•	-
UG9	-	-	ı	0	0	0	0	1	5	5	1	-
UG10	-	-	ı	0	0	0	3	3	5	33	•	-
UG11	-	-	•	0	0	0	4	4	5	4	•	-
UG12	-	-	•	0	0	0	0	0	0	0	-	-
UG13	-	-	•	0	0	0	1	4	5	3	-	-
UG14	-	-	•	0	0	0	4	4	5	5	•	-
UG15	-	-	•	0	0	3	3	4	5	3	-	-
UG16	-	-	•	0	0	1	3	4	5	4	-	-
UG17	-	-	•	0	0	0	0	1	4	1	-	-
UG18	-	-	•	0	0	0	0	3	3	3	-	-
UG19	-	-	•	0	0	1	1	5	5	5	-	-
UG20	-	-	-	0	0	1	1	4	5	5	-	-
UG22	-	-	-	0	0	0	1	1	3	3	-	-
UG24	-	-	-	0	0	1	1	1	3	3	-	-
UG25	-	-	-	0	0	0	0	0	3	3	-	-
UG27	-	-	-	0	0	0	0	1	3	0	-	-
UG28	-	-	-	0	1	3	4	4	5	5	-	-
UG29	-	-	-	0	0	1	3	3	3	3	-	-
UG30	-	-	-	0	0	4	4	5	5	5	-	-
UG31	-	-	-	0	0	4	4	5	5	5	-	-

Tableau 6 : Typologies de l'hydrologie de l'ensemble des UG du territoire sur la période 2000-2019 et en projection à l'horizon 2050

Tableau 7 : Synthèse des analyses croisées sur les unités de gestion des territoires des SAGE Vienne et Vienne tourangelle

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 1 - Vienne amont	Impact des prélèvements et rejets est négligeable pour le module, le QMNA5, le VCN30(2) et le VCN30(5) sur l'hydrologie de la Vienne amont. Les indicateurs d'étiage en situation influencée sont réduits de 1% (VCN30(5) = -27 L/s) au maximum en comparaison aux indicateurs en situation désinfluencée	Les principales perturbations hydromorphologiques sont liées aux barrages hydroélectriques. Malgré la dérivation du barrage de Servières, la saisonnalité du régime hydrologique est considérée comme naturelle sur l'ensemble de l'axe de la Vienne dans cette UG même si une partie du bassin versant amont est court-circuitée.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 41% des prélèvements et majoritaires tout au long de l'année), vient ensuite l'alimentation en eau potable (34% des prélèvements avec une proportion accentuée en période estivale) et l'Abreuvement (25%). Le prélèvement net sur la Vienne amont est d'environ 970 m3/km2/an, soit environ 14% de la moyenne (6 870 m3/km2/an) des unités de gestion du territoire.	Le changement climatique devrait conduire une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 15% sur le QMNA5 désinfluencé). L'écart relatif et absolu entre la situation influencée et désinfluencée est faible (1%) et restera de cet ordre de 1% à l'horizon 2050.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie reste peu visible. On retrouve les typologies de code 0 entre les mois de mai et juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois d'août à octobre, traduisant une hydrologie naturellement défavorable aux milieux avec un seuil de DB franchi par le QMN5 désinfluencé ou influencé. j f m a m j j a s o n d 0 0 0 0 0 3 3 3 3	L'effet seul du changement climatique devrait influencer les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 5% en moyenne sur la période juillet-août et de plus de 10% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à n'accentuer que très faiblement la diminution des débits d'étiage dans cette UG. Les typologies d'hydrologie ainsi rencontrées ne changent pas entre mai et octobre. L'hydrologie resterait naturellement contraignante et les usages n'aggraveront que faiblement la situation avec un QMN5 désinfluencé ou influencé qui serait supérieur au seuil de DB bas ce mois-ci.
						j f m a m j j a s o n d 0 0 0 0 0 3 3 3
UG 2 - Combade	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, le VCN30(2), le QMNA5 et le VCN30(5) de la Combade. Les indicateurs d'étiage en situation influencée sont réduits de 2,8% (VCN30(2) = -18 L/s) au maximum en comparaison aux indicateurs en situation désinfluencée.	L'UG de la Combade est caractérisée par une morphologie naturelle, avec notamment la présence de gros blocs à proximité de la station de débits biologique. Ce contexte permet de favoriser la présence de salmonidés au sein du bassin versant. La présence de cheptels peut engendrer du piétinement de berges. Les berges dégradées peuvent impacter les populations piscicoles par colmatage et dégradation de la qualité de l'eau.	La Combade est caractérisée par des prélèvements relativement faibles en comparaison à l'ensemble des UG. En 2019, le volume total prélevé est de l'ordre de 649 729 m³ contre un volume total restitué d'environ 350 997 m³. Ainsi, l'UG présente un prélèvement net de 298 731 m³ en 2019 ; Le prélèvement net sur la Combade est d'environ 1 222 m³/km²/an, soit environ 18% de moins que la moyenne (6 870 m³/km²/an) des unités de gestion du territoire.	Le changement climatique devrait conduire une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 20% sur le QMNA5 désinfluencé et de 16% sur le QMNA2 désinfluencé); Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.16 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre); Le VCN30(5) désinfluencé diminuera de 20% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 15%;	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie n'est que peu visible. On retrouve les typologies de code 0 entre les mois de mai et août où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 au mois de septembre et octobre traduisant une hydrologie naturellement contraignante avec un seuil de DB haut franchi par le QMN5 désinfluencé et influencé mais avec le seuil de DB bas non franchi par le QMN5 désinfluencé et influencé.	L'effet seul du changement devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 10% en moyenne sur la période juillet-août et de plus de 15% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à une situation plus critique en termes d'indicateurs hydrologiques du fait de l'augmentation des volumes de prélèvements destinés à l'AEP et de la surévaporation des plans d'eau à l'horizon 2050. Les typologies d'hydrologie ainsi rencontrées changent fortement avec le passage en code 4 le mois de septembre et en code 5 en octobre c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et le DB seuil bas serait franchi par l'hydrologie naturelle et influencée.
						j f m a m j j a s o n d 0 0 0 0 1 4 5
UG 3 – Maulde	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et faible pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Maulde. Les indicateurs d'étiage en situation influencée sont réduits de 10% au maximum en comparaison (VCN30(5) = -211 L/s) aux indicateurs en situation désinfluencée.	La présence des barrages hydroélectriques perturbe fortement la variabilité hydrologique naturelle du cours d'eau notamment en période d'étiage (soutien d'étiage). La rétention des sédiments par les barrages amène à réduire les surfaces de frayères. Enfin, ces barrages sont des obstacles à la continuité piscicole. Le secteur situé entre le barrage de Vassivière et l'exutoire de la conduite forcée des turbinages des eaux provenant de Vassivière n'est soumis qu'au débit réservé de la retenue et n'est pas sous influence des éclusées faisant fluctuer fortement les débits en étiage.	L'UG présente un prélèvement net de 3 247 646 m3 en 2019. Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 84% des prélèvements et majoritaires tout au long de l'année), vient ensuite l'alimentation en eau potable (11% des prélèvements avec une proportion accentuée en période estivale), l'Abreuvement (5%) et les activités industrielles (0,1%). Le prélèvement net est d'environ 6 643 m3/km2/an ce qui est équivalent à la moyenne (6 870 m3/km2/an) des unités de gestion du territoire.	Le changement climatique devrait conduire une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 18% sur le QMNA5 désinfluencé et de 15% sur le QMNA2 désinfluencé. L'écart relatif et absolu entre la situation influencée et désinfluencée est significatif (environ 9% de diminution sur les indicateurs d'étiage) et aura tendance à augmenter à l'horizon 2050 pour atteindre 11%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est nettement visible du fait du fonctionnement hydro-électrique des barrages qui vient perturber les débits d'étiage notamment du fait de la réalimentation du cours principal de la Maulde. On retrouve les typologies de code 0 entre les mois de mai et octobre où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 12% en moyenne sur la période juillet-août et de plus de 20% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à une situation quasiment similaire en termes d'indicateurs hydrologiques dans cette UG. Les typologies d'hydrologie ainsi rencontrées ne changent pas et resterait en code 0 entre mai et octobre.
UG 4 – Taurion à Pontario n	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, faible pour le VCN30(2) et modéré pour le QMNA5 et le VCN30(5) sur l'hydrologie du Taurion à Pontarion. Les indicateurs d'étiage en situation influencée sont réduits de 31,6% au maximum en comparaison (VCN30(5) = -184,3 L/s) aux indicateurs en situation désinfluencée. Il est toutefois à noter que le débit du Taurion amont est perturbé par la dérivation d'une partie des eaux provenant du bassin amont de cette UG au niveau de la retenue de Lavaud Gelade représentant une surface de 45 km² dérivée vers la Maulde (Vassivière).	Le réseau hydrographique est considéré comme perturbé en lien principalement avec les obstacles à l'écoulement sur cours d'eau, à la présence du barrage de Lavaud Gelade géré par EDF et à l'abondance d'étangs. La retenue de Lavaud Gelade a pour but de dériver une partie des écoulements du bassin amont du Taurion vers la retenue de Vassivière (UG 3 - Maulde). Des zones de piétinement, de colmatage et de manques de ripisylve ponctuels sont également présentes. Ces perturbations peuvent limiter le développement des populations salmonicoles et réduire les zones de frayères. La masse d'eau située à l'aval de la retenue de Lavaud Gelade est classée comme « état écologique médiocre ».	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 58% des prélèvements et majoritaires tout au long de l'année), vient ensuite l'alimentation en eau potable (24% des prélèvements avec une proportion accentuée en période estivale), l'Abreuvement (18%). L'irrigation et les activités industrielles représentent moins de 1% des prélèvements dans cette UG. Le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 831 m3/km ce qui représente 26% de la moyenne (6 870 m3/km2/an) des unités de gestion du territoire.	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 31% sur le QMNA2 désinfluencé et de 47% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.52 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 24% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 21%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est significatif. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois de juillet à août et le code 5 en septembre, traduisant une hydrologie naturellement défavorable aux milieux avec un seuil de DB franchi par le QMN5 désinfluencé ou influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 30% en moyenne sur la période août-septembre et de plus de 40% en octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à une situation qui se détériore du fait de l'augmentation de la surévaporation des plans d'eau et de l'abreuvement notamment dans cette UG. Les typologies d'hydrologie rencontrées à l'horizon 2050 devraient principalement changer en fin d'étiage avec un passage en code 5 aux mois de septembre et octobre. L'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et un seuil de DB bas franchi par l'hydrologie influencée ou désinfluencée.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 5 – Vige	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le MCN30(5) et le QMNA5 sur l'hydrologie de la Vige. Les indicateurs d'étiage en situation influencée sont réduits de 4,6% au maximum en comparaison (VCN30(5) = -17 L/s) aux indicateurs en situation désinfluencée.	La Vige est caractérisée par un contexte salmonicole. L'espèce emblématique est la truite fario. Le réseau hydrographique est considéré comme perturbé, avec des perturbations principalement liées aux obstacles à l'écoulement, par le colmatage et la modification des faciès dans une moindre mesure. Le colmatage est lié aux zones de piétinement qui érode les berges et aux sédiments piégés dans les étangs. Ces perturbations réduisent les zones de frayères et les habitats piscicoles plus généralement. La masse d'eau de la Vige reste malgré tout classée en « bon état écologique ».	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (36% des prélèvements), de la surévaporation liée aux plans d'eau (près de 34% des prélèvements) et l'Abreuvement (30%). L'irrigation et les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 37% des prélèvements ce qui donne un prélèvement net par km² sur cette UG entre 2000 et 2019 de 2 069 m3/km² soit 30% de la moyenne de l'ensemble des UG du bassin de la Vienne.	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 23% sur le QMNA5 désinfluencé et de 17% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.13 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 20% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 14%.	En période de basses eaux, l'effet des usages sur l'hydrologie est nettement visible. On retrouve les typologies de code 0 entre les mois de mai et juillet où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois d'août à octobre où l'hydrologie désinfluencée et influencée passe en dessous du seuil haut de DB.	L'effet seul du changement climatique devrait influencer les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 12% en moyenne sur la période juillet-août et de plus de 25% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à diminuer relativement de manière importante les QMN5. Cela conduit à changer les typologies d'hydrologie rencontrées. Le code passerait à 3 entre les mois de juillet août puis à 5 aux mois de septembre et octobre c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.
UG 6 – Taurion aval	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et le VCN30(2) et faible pour le VCN30(5) et le QMNA5 sur l'hydrologie du Taurion aval. Les indicateurs d'étiage en situation influencée sont réduits de 11% (QMNA5 = -379 L/s) au maximum en comparaison aux indicateurs en situation désinfluencée.	La section amont du Taurion est caractérisée par un contexte piscicole intermédiaire et assez perturbé. La présence des nombreux barrages hydroélectrique dont le complexe de la Roche Talamy, de Saint Marc et de Chauvan perturbe le régime hydrologique naturel du cours d'eau. Les principales perturbations sont liées à ces barrages et aux nombreux plans d'eau, ainsi qu'aux autres obstacles de franchissement qui se révèlent nombreux. Du colmatage est également constaté en lien avec l'activité d'élevage qui peut conduire au piétinement des berges et des apports organiques.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 45% des prélèvements et majoritaires tout au long de l'année), vient ensuite l'alimentation en eau potable (40% des prélèvements avec une proportion accentuée en période estivale) et l'Abreuvement (14%). L'irrigation et les activités industrielles ne sont pas présentes dans cette UG. Les restitutions représentent 48% des prélèvements et en moyenne, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 2 625 m3/km² soit 38% de la moyenne de l'ensemble des UG du bassin de la Vienne.	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 24% sur le QMNA5 désinfluencé et de 19% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.8 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 17% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 14%. L'écart relatif et absolu entre la situation influencée et désinfluencée est actuellement modéré (environ 7% en moyenne de diminution sur les indicateurs d'étiage) mais aura tendance à se creuser pour dépasser les 11% à l'horizon 2050.	En période de basses eaux, l'effet des usages sur l'hydrologie est peu visible. On retrouve les typologies de code 0 entre les mois de mai et octobre où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. j f m a m j j a s o n d 0 0 0 0 0 0 0	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 15% en juillet août et de plus de 35% en août et septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages avec des diminutions de 40% du QMN5 au mois de septembre du fait des usages réalisés dans cette UG. Toutefois, les typologies d'hydrologie ainsi rencontrées ne changent que très peu et le code passerait à 1 en octobre c'est-à-dire que l'hydrologie resterait naturellement favorable et seulement le QMN5 influencés qui passerait en dessous du seuil de DB haut.
UG 7 – Vienne entre Maulde et Aixette	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, le VCN30(2), le VCN30(5) et le QMNA5 sur l'hydrologie de la Vienne entre la Maulde et l'Aurence. Les indicateurs d'étiage en situation influencée sont réduits de 4,3% au maximum en comparaison (VCN30(5) = -596 L/s) aux indicateurs en situation désinfluencée.	La Vienne à l'amont de la confluence avec le Taurion, témoigne d'un contexte piscicole intermédiaire sur l'axe principal et salmonicole sur les affluents de la Vienne. L'Etat fonctionnel de ces espèces est perturbé du fait des nombreux barrages présents dans ce secteur. Les actions préconisées dans ce secteur concernent la restauration de la continuité écologique et de la circulation piscicole et limiter le piétinement du bétail en berge. Il est à noter également que la moule perlière Margaritifera margaritifera est présente dans ce secteur et des actions de préservation de cette espèce doivent être envisagées.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (près de 73% des prélèvements et majoritaires tout au long de l'année), vient ensuite l'industrie (11%), la surévaporation liée aux plans d'eau (8% des prélèvements avec une proportion accentuée en période estivale), l'Abreuvement (7%) et l'irrigation (1%). Les restitutions représentent 383% des prélèvements et en moyenne, le rejet net par km² sur cette UG entre 2000 et 2019 est de 48 475 m3/km². Cet axe de la Vienne est réalimenté par les différentes retenues situées à l'amont du bassin : les réservoirs de la Vienne supérieure (chaînes Maulde-Taurion).	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 3% sur le QMNA5 désinfluencé et de 4% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 2.3 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 10% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 12%. L'écart relatif et absolu entre la situation influencée et désinfluencée est actuellement faible (environ 2% de diminution sur les indicateurs d'étiage) et aura tendance à légèrement augmenter pour atteindre 3 % à l'horizon 2050.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très peu visible. On retrouve les typologies de code 0 entre les mois de mai et octobre où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. j f m a m j j a s o n d 0 0 0 0 0 0 0	L'effet seul du changement devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 18% en moyenne sur la période août-septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver légèrement la situation des étiages avec des diminutions de plus de 23% du QMN5 au mois de septembre. Toutefois, les typologies d'hydrologie ainsi rencontrées restent inchangées pendant toute la période de basses eaux où le code resterait à 0 où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé.
UG 8 – Ruisseau du Palais	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est faible pour le module, modéré pour le VCN30(2) et le QMNA5 et important pour le VCN30(5) sur l'hydrologie du Ruisseau du Palais. Les indicateurs d'étiage en situation influencée sont réduits de 33% au maximum en comparaison (VCN30(5) = -49 L/s) aux indicateurs en situation désinfluencée.	Le ruisseau du Palais connait des risques morphologiques et hydrologiques selon l'état des lieux du SDAGE 2019. Les perturbations sont nombreuses sur ce bassin versant. L'urbanisation présente sur l'aval du ruisseau du Palais (Palais-sur-Vienne et Rilhac Rançon), ainsi que les nombreux plans d'eau et obstacles sur cours d'eau entravent le régime hydrologique naturel du cours d'eau. Les activités d'élevage amènent au piétinement des berges. Enfin, la retenue de Beaune servant de captages en eau potable pour la Communauté Urbaine de Limoges Métropole ajoute des perturbations sur la continuité des milieux aquatiques et donc aux habitats piscicoles.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (près de 93% des prélèvements et majoritaires tout au long de l'année) puis vient ensuite la surévaporation liée aux plans d'eau (6% des prélèvements avec une proportion accentuée en période estivale) et l'abreuvement (1%). Les autres usages ne sont pas présents dans cette UG. Les restitutions représentent 20,4 % des prélèvements et en moyenne, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 33 337 m3/km² soit presque 5 fois la moyenne du bassin (6 870 m3/km2/an).	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 30% sur le QMNA5 désinfluencé et de 19% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.06 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 29% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 17%.	En période de basses eaux, l'effet des usages sur l'hydrologie est modéré mais reste visible. On retrouve les typologies de code 0 entre les mois de mai et juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois d'août à octobre, traduisant une hydrologie naturellement défavorable aux milieux avec un seuil haut de DB franchi par le QMN5 désinfluencé ou influencé.	L'effet seul du changement devrait influencer significativement les étiages en hydrologie naturelle ou influencée (diminution de 10% en moyenne sur la période juillet-août et de plus de 30% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à une situation plus contraignante en termes d'indicateurs hydrologiques et les usages devraient conduire à accentuer la baisse des QMN5 d'environ 15% entre juillet et octobre. Les typologies d'hydrologie rencontrées changent fortement : le code passerait à 3 en juillet puis à 5 en août c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 9 – Briance	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et modéré pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Briance. Les indicateurs d'étiage en situation influencée sont réduits de 11,4% au maximum en comparaison (VCN30(5) = -115,1 L/s) aux indicateurs en situation désinfluencée.	La partie amont de la Briance est relativement naturelle, peu perturbée en lien avec sa situation de tête de bassin versant. Les perturbations identifiées sont principalement liées au piétinement des berges et aux obstacles de franchissement. Cette portion est considérée en domaine piscicole salmonicole avec la truite fario comme espèce repère. A l'aval, notamment à proximité de la station de débit biologique, les milieux sont plus dégradés et anthropisés (urbanisation). Sur l'axe de la Briance à partir du Vigen, le domaine piscicole devient intermédiaire, et les espèces repères sont les cyprinidés rhéophiles. L'état fonctionnel est perturbé, avec notamment les nombreux étangs et seuils sur cours d'eau. Ces entraves ont tendance à réduire la continuité écologique et impacter les peuplements piscicoles. Une majorité de cette section de la Briance est incisée, avec des berges érodées et l'enfoncement du lit mineur. Le piétinement lié à présence de pâturage renforce le colmatage naturel du lit.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (57% des prélèvements et majoritaire tout au long de l'année), puis de l'abreuvement (23%), de la surévaporation liée aux plans d'eau (près de 19% avec une proportion accentuée en période estivale), et de l'irrigation (1%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 3 862 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 29% sur le QMNA5 désinfluencé et de 16% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.41 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 28% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 16%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible mais modéré. On retrouve les typologies de code 0 entre les mois de mai et juillet, puis de code 1 au mois d'août où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois de septembre et octobre, traduisant une hydrologie naturellement défavorable aux milieux avec un seuil de DB franchi par le QMN5 désinfluencé ou influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 15% en moyenne sur la période juillet-août et de plus de 30% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à accentuer légèrement la situation en termes d'indicateurs hydrologiques du fait des usages (surévaporation et abreuvement) réalisés dans cette UG. Les typologies d'hydrologie rencontrées changent fortement à l'horizon 2050 où le code passerait à 5 entre septembre et octobre c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.
UG 10 – Aurence	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est positif sur l'aspect quantitatif de ce cours d'eau. En effet, les volumes rejetés étant plus importants que les volumes prélevés les indicateurs influencés sont plus élevés que les indicateurs désinfluencés. Les indicateurs d'étiage en situation influencée sont augmentés de 18% au maximum en comparaison (VCN30(5) = +26 L/s) aux indicateurs en situation désinfluencée.	Très anthropisée du fait de la forte urbanisation. Cette UG traverse une partie de la Communauté Urbaine de Limoges Métropole où ses berges ont été modifiées et les sols de son bassin versant ont été fortement imperméabilisés. Son état fonctionnel est perturbé et les facteurs limitants principaux sont les seuils et les obstacles au franchissement, provoquant des problématiques de continuité écologique. La présence de prairies de pâturage provoque également le piétinement des berges, ce qui renforce l'ensablement et le colmatage déjà bien présents. L'Aurence appartient au domaine piscicole salmonicole avec pour espèce repère la truite fario. Les chabots, les vairons, les loches franches, les lamproies, les chevesnes, les spirlins et les goujons sont également retrouvés.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (56% des prélèvements), puis de la surévaporation liée aux plans d'eau (près de 30% avec une proportion accentuée en période estivale), de l'Abreuvement (9%) et de l'irrigation (6%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 450% des prélèvements et le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 17 858 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 35% sur le QMNA5 désinfluencé et de 23% sur le QMNA2 désinfluencé); Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.07 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre); Le VCN30(5) désinfluencé diminuera de 32% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 19%.	En période de basses eaux et surtout en hautes eaux, l'effet des usages sur l'hydrologie est positif car il y a davantage de rejets que de prélèvements dans cette UG. On retrouve les typologies de code 0 entre les mois de mai et juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé et influencé. En revanche on retrouve le code 3 aux mois d'août à octobre, traduisant une hydrologie naturellement défavorable aux milieux conduisant à un seuil de DB bas franchi par le QMN5 désinfluencé et influencé. j f m a m j j a s o n d 0 0 0 0 3 3 3 3	L'effet seul du changement devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 35% en moyenne sur la période août et septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à atténuer la situation des étiages avec des diminutions de 30% du QMN5 aux mois de septembre et octobre du fait des rejets dans cette UG principalement liés à l'assainissement. Les typologies d'hydrologie ainsi rencontrées changent uniquement au mois de septembre où le code passerait à 5 c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.
UG 11 – Aixette	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, faible pour le VCN30(2) et important pour le QMNA5 et le VCN30(5) sur l'hydrologie de l'Aixette. Les indicateurs d'étiage en situation influencée sont réduits de 82% au maximum en comparaison (QMNA5 = -32 L/s) aux indicateurs en situation désinfluencée.	L'UG Aixette est principalement occupée par des prairies et des surfaces agricoles discontinues. La partie amont se caractérise par des zones forestières et des zones humides. Son état fonctionnel est perturbé par de nombreux obstacles à la continuité écologique (seuils de moulins ou plans d'eau). La morphologie des cours d'eau est dégradée par le piétinement des berges, le manque d'entretien de la ripisylve et le colmatage. L'Aixette appartient au domaine piscicole salmonicole avec pour espèce repère la truite fario. Les chabots, les vairons, les loches franches, les chevesnes, les spirlins et les goujons sont également retrouvés. Des écrevisses à pattes blanches sont ponctuellement présentes. Inversement, des espèces invasives comme l'écrevisse de Californie sont retrouvées selon le PDPG Haute Vienne.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 47% avec une proportion accentuée en période estivale), vient ensuite l'Abreuvement (37% des prélèvements) puis l'alimentation en eau potable (16%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 48 % des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 918 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 29% sur le QMNA5 désinfluencé et de 17% sur le QMNA2 désinfluencé). Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.02 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 31% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 23%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche, aux mois d'août à octobre, l'hydrologie devient naturellement contraignante aux milieux (code 4) avec un seuil de DB haut franchi par le QMN5 désinfluencé et influencé et un seuil de DB bas franchi par le QMN5 influencé. j f m a m j j a s o n d 0 0 0 1 4 4 4	L'effet seul du changement devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 20% en moyenne sur la période juillet-août et de plus de 30% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages avec des diminutions de plus de 20% du QMN5 aux mois de juillet et septembre du fait des usages réalisés dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent fortement où le code passerait à 4 en juillet et à 5 au mois de septembre c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 12 – Vienne entre Aixette et Availles	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Vienne entre Aixe-sur-Vienne et sa confluence avec l'Issoire. Les indicateurs d'étiage en situation influencée sont réduits de 16% au maximum en comparaison (VCN30(5) = -2921 L/s) aux indicateurs en situation désinfluencée.	La Vienne à l'aval de la confluence avec l'Aixette, témoigne d'un contexte piscicole cyprinicole sur l'axe principal et salmonicole sur les affluents de la Vienne. L'Etat fonctionnel de ces espèces est perturbé du fait des nombreux barrages présents dans ce secteur impactant ainsi la continuité et le fonctionnement hydrologique de la Vienne. Les actions préconisées dans ce secteur concernent la restauration de la continuité écologique et de la circulation piscicole et limiter le piétinement du bétail en berge. Il est également préconisé d'aménager des frayères à brochet sur le cours principal de la Vienne.	Les prélèvements majoritaires proviennent des activités industrielles (94% des prélèvements) puis de la surévaporation liée aux plans d'eau (près de 3%), vient ensuite l'alimentation en eau potable (1%) et l'Abreuvement (2%) et l'irrigation (1%). En moyenne sur la période 2000-2019, les restitutions représentent 99,2% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 468 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 7% sur le QMNA5 désinfluencé et de 6% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 2.9 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 1% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 1%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible mais l'hydrologie reste favorable pendant toute la période de basses eaux. On retrouve les typologies de code 0 entre les mois de mai et octobre où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 10% en moyenne sur la période juillet-août et de plus de 15% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages avec des diminutions de plus de 5% du QMN5 aux mois d'août et septembre du fait des usages réalisés dans cette UG. Toutefois, les typologies d'hydrologie ainsi rencontrées ne changent pas et le code resterait à 0 pendant toute la période de basses eaux l'hydrologie reste favorable aux milieux.
UG 13 – Glane	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, modéré pour le VCN30(2) et le QMNA5 et important pour le VCN30(5) sur l'hydrologie de la Glane. Les indicateurs d'étiage en situation influencée sont réduits de 32,4% au maximum en comparaison (VCN30(5) = -100 L/s) aux indicateurs en situation désinfluencée.	La Glane est dans un état fonctionnel perturbé. Les principaux facteurs limitants sont expliqués par la présence de seuils et de plans d'eau. Ce bassin versant rencontre aussi des problématiques de piétinement de berges, d'obstacle à l'écoulement et d'imperméabilisation des sols. A proximité de l'exutoire le territoire est également urbanisé vers Saint Junien. L'amont du bassin versant de la Glane est considéré en catégorie piscicole salmonicole, avec comme espèce repère la truite fario. Des écrevisses à pattes blanches sont également retrouvées. L'aval de l'UG est considéré en catégorie piscicole intermédiaire avec comme espèce repère les cyprinidés rhéophiles tandis que ses affluents restent dans un domaine salmonicole avec comme espèce repère les truites farios.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 63% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (17% des prélèvements), l'Abreuvement (16%) et l'irrigation (4%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 67,2% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 2 129 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 35% sur le QMNA5 désinfluencé et de 20% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.05 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 31% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 20%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est nettement visible. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 au mois d'août et octobre et un code 4 au mois de septembre, traduisant une hydrologie naturellement contraignante aux milieux avec un seuil de DB bas franchi par le QMN5 influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 10% en août et de plus de 25% en septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août avec des diminutions de plus de 10% du QMN5 aux mois de septembre et octobre du fait des usages réalisés dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent fortement où le code passerait à 4 en août puis à 5 au mois de septembre c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.
UG 14 – Gorre	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, modéré pour le VCN30(2) et important pour le QMNA5 et le VCN30(5) sur l'hydrologie de la Gorre. Les indicateurs d'étiage en situation influencée sont réduits de 76 % (VCN30(5) réduit de -58,1 L/s) au maximum en comparaison aux indicateurs en situation désinfluencée.	Le territoire est principalement occupé par des surfaces agricoles et des prairies. Les principales perturbations sont liées aux obstacles sur cours d'eau (plans d'eau et aux seuils) et au piétinement des berges en lien avec l'activité d'élevage. Cette section est considérée en domaine piscicole salmonicole avec la truite fario pour espèce repère. La présence de gardons, de perche, de perches soleil, de carpes, de poissons chat, d'écrevisses américaines et d'écrevisses de Californie traduisent la dégradation de la qualité des milieux, notamment en lien avec les seuils et les étangs.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 65% avec une proportion accentuée en période estivale), puis vient ensuite l'Abreuvement (35%). L'irrigation, l'alimentation en eau potable et les activités industrielles ne sont pas des usages présents dans cette UG en 2019. Des prélèvements d'alimentation en eau potable étaient présents entre 2000 et 2018 puis ils ont été arrêtés en 2019. En moyenne sur la période 2000-2019, les restitutions représentent 29,3% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 875 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 35% sur le QMNA5 désinfluencé et de 24% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.06 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 35% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 26%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible avec la même intensité. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi ni par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 4 aux mois d'août et octobre et un code 5 au mois de septembre, traduisant une hydrologie naturellement défavorable aux milieux avec un seuil de DB franchi par le QMN5 naturelle ou influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages que ce soit en hydrologie naturelle ou influencée (diminution d'environ 20% en moyenne sur la période juillet-août et de 40% en septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en juillet et août avec des diminutions de plus de 10% du QMN5 du fait des usages réalisés dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent fortement où le code passerait à 4 au mois de juillet puis à 5 aux mois de septembre et octobre, c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.
UG 15 – Graine	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et modéré pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Graine. Les indicateurs d'étiage en situation influencée sont réduits de 35% au maximum en comparaison (VCN30(5) = -17 L/s) aux indicateurs en situation désinfluencée.	Les principales perturbations sont liées aux plans d'eau, aux seuils, et au piétinement des berges en lien avec l'activité d'élevage. D'un point de vue hydrologique, le bassin de la Graine connait des débits très contrastés avec des crues potentiellement fortes et des étiages sévères. Les faibles températures et le réchauffement des cours d'eau amène à augmenter la température et à diminuer la teneur en oxygène ce qui est souvent incompatible avec les exigences de la truite fario. Cependant, la Graine est considérée en domaine piscicole salmonicole avec pour espèce repère la truite fario.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 47% avec une proportion accentuée en période estivale), vient ensuite l'Abreuvement (40% des prélèvements), l'alimentation en eau potable (9%) et l'irrigation (5%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 109% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 289 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 34% sur le QMNA5 désinfluencé et de 22% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.03 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 34% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 24%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est nettement visible. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 3 aux mois de juillet et octobre, le code 4 au mois d'août et un code 5 au mois de septembre traduisant une hydrologie naturellement défavorable aux milieux avec un seuil de DB bas franchi par le QMN5 désinfluencé ou influencé.	L'effet seul du changement devrait influencer fortement sur les étiages (diminution d'environ 20% en août et de 60% en septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 15% du QMN5 du fait des usages réalisés dans cette UG. Les typologies d'hydrologie rencontrées restent toutefois inchangées où le code resterait à 4 au mois d'août puis à 5 au mois de septembre, c'est-à-dire que l'hydrologie resterait naturellement très contraignante avec les usages qui aggraveront la situation et donc des QMN5 influencés et désinfluencés en dessous du seuil de DB bas.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 16 – Goire	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, modéré pour le VCM30(2) et important pour le QMNA5 et le VCN30(5) sur l'hydrologie du Goire. Les indicateurs d'étiage en situation influencée sont réduits de 97% au maximum en comparaison (QMNA5 = -27 L/s) aux indicateurs en situation désinfluencée.	Le PDPG de la Charente et le rapport du CTMA du SIGIV indiquent que le territoire est majoritairement occupé par des prairies et autres surfaces en herbe à usage agricole. Il est en état fonctionnel perturbé. Les principales perturbations sont liées aux obstacles hydrauliques (barrages, seuils), aux plans d'eau, à la modification du régime hydrologique naturel du cours d'eau et au piétinement des cheptels. Le Goire est caractérisé par la présence de nombreux moulins. Cette section est considérée en domaine piscicole salmonicole avec pour espèce repère la truite fario. Cependant, les populations piscicoles sont relativement dégradées, surtout en s'éloignant de l'exutoire. Toutes les espèces exigeantes en termes de qualité d'habitat (truite fario, chabot; lamproie) ont été fortement réduites et seul le vairon se développe à un niveau acceptable sur le bassin.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 65% avec une proportion accentuée en période estivale), vient ensuite l'Abreuvement (35% des prélèvements). L'alimentation en eau potable, l'irrigation et les activités industrielles ne sont pas des usages présents dans cette UG en 2019. En moyenne sur la période 2000-2019, les restitutions représentent 48% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 848 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 10% sur le QMNA2 désinfluencé et de 31% sur le QMNA2 désinfluencé). Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.04 m3/s pour les débits mensuels quinquennaux secs des mois de juillet à octobre) ; Le VCN30(5) désinfluencé diminuera de 3% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 1%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est important. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. En revanche on retrouve le code 4 au mois d'août et un code 5 au mois de septembre traduisant une hydrologie naturellement très contraignante aux milieux avec un seuil de DB bas franchi par le QMN5 désinfluencé et influencé. j f m a m j j a s o n d 0 0 0 1 4 5 3	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 10% en août et de plus de 30% en septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages en juillet et août avec des diminutions de plus de 25% du QMN5 du fait des usages réalisés dans cette UG et de plus de 50% en septembre. Les typologies d'hydrologie ainsi rencontrées changent au mois de juillet où le code passerait à 3, c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante plus tôt dans la période de basses eaux et le mois d'octobre qui passerait avec le code 4 prolongeant ainsi l'étiage dans une hydrologie naturellement contraignante.
UG 17 – Issoire	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et très important pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de l'Issoire. Les indicateurs d'étiage en situation influencée sont réduits de 68% au maximum en comparaison (VCN30(5) = -113,2 L/s) aux indicateurs en situation désinfluencée.	Selon le PDPG de la Charente et le rapport du Contrat Territorial des Milieux Aquatiques de la SIGIV, l'UG est majoritairement occupée par des prairies et autres surfaces en herbe à usage agricole. L'Issoire est en état fonctionnel perturbé. Les principaux facteurs limitants sont les obstacles à l'écoulement, les plans d'eau, le piétinement des cheptels, et la présence d'espèces envahissantes. L'Issoire était considérée en 2012, en catégorie piscicole salmonicole, avec comme espèce repère la truite fario mais a depuis subit des dégradations hydromorphologiques qui ont limitées le développement de ces espèces salmonicoles. Les populations de Truite et de Chabot sont en forte baisse alors que le Vairon et la Loche Franche ont montré davantage de résilience vis-à-vis de ce contexte dégradé.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (55% des prélèvements), de la surévaporation liée aux plans d'eau (près de 34% avec une proportion accentuée en période estivale), vient ensuite l'Abreuvement (10%) et les activités industrielles (1%). L'irrigation n'est que très faiblement présente dans cette UG et représente moins de 1% des prélèvements. En moyenne sur la période 2000-2019, les restitutions représentent 17% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 6 324 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 37% sur le QMNA5 désinfluencé et de 15% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.07 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 33% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 14%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible. On retrouve les typologies de code 0 entre les mois de mai et juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 1 aux mois d'août et octobre, où le seuil de DB haut est franchi uniquement par le QMN5 influencé et le code 3 en septembre ou l'hydrologie devient naturellement contraignante et où le DB haut est franchi par le QMN5 désinfluencé et influencé.	L'effet seul du changement climatique devrait influencer significativement les étiages (diminution d'environ 20% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août et septembre avec des diminutions de plus de 25% du QMN5 du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 4 au mois de de septembre, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante aux milieux et donc avec un QMN5 influencé en dessous du seuil de DB bas.
UG 18 – Vienne entre Issoire et Grande Blourde	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Vienne entre l'Issoire et la Grande Blourde. Les indicateurs d'étiage en situation influencée sont réduits de 6,4% au maximum en comparaison (VCN30(5) = -1040 L/s) aux indicateurs en situation désinfluencée.	La partie du contexte Vienne dans le département de la Vienne est sous influence des trois grands barrages du complexe de Chardes (Chardes, Roche et Jousseau). Il s'agit d'une portion profondément modifiée dans laquelle il n'y a pas d'écoulement libre et où la profondeur est très importante. Les retenues abritent donc une population de type plan d'eau. La population de carnassiers est représentée par des fortes densités de sandres, de perches, de blackbass, de brochets et de silures. La présence des trois barrages modifie profondément et durablement cette partie de la Vienne. Ils représentent des points noirs d'un point de vue continuité écologique. Le contexte est donc qualifié de dégradé pour sa partie localisée dans le département de la Vienne.	Les prélèvements majoritaires proviennent de l'irrigation (41% des prélèvements), de la surévaporation liée aux plans d'eau (près de 37% avec une proportion accentuée en période estivale), vient ensuite, l'alimentation en eau potable (22%) et l'Abreuvement (moins de 1%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 17% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 15 940 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 8% sur le QMNA5 désinfluencé et de 7% sur le QMNA2 désinfluencé. Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 3.03 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé restera stable à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) diminuera de 2%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est peu visible. On retrouve les typologies de code 0 entre les mois de mai à juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 3 au mois d'août où le seuil de DB haut est franchi par les QMN5 désinfluencé et influencé et l'hydrologie devient naturellement contraignante. j f m a m j j a s o n d 0 0 0 0 3 1 0	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 15% en moyenne sur la période juillet-août puis 40% entre septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 15% du QMN5 du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 3 aux mois d'août, septembre et octobre, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB haut.
UG 19 – Grande Blourde	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module mais important pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Grande Blourde. Les indicateurs d'étiage en situation influencée sont réduits de 99% au maximum en comparaison (VCN30(5) = -55,9 L/s) aux indicateurs en situation désinfluencée.	L'amont du bassin de la Grande Blourde est caractérisé par une grande concentration de plans d'eau. Ces derniers sont en barrage de cours d'eau et captent une partie significative des écoulements et intensifient les étiages à l'aval. La géologie de socle défavorable au stockage en eau qui renforce les problématiques de débits. Les travaux d'aménagements hydrauliques effectués dans les années 1990 (recalibrage, curage) sont à l'origine de la dégradation de la qualité des habitats piscicoles ainsi le piétinement du bétail qui dégrade les berges, et des ouvrages qui impactent la continuité écologique du cours d'eau. Cette section est considérée en domaine intermédiaire avec pour espèce repère les cyprinidés rhéophiles.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 63% avec une proportion accentuée en période estivale), vient ensuite l'irrigation (26% des prélèvements), l'abreuvement (10%) et les activités industrielles (1%). Les prélèvements d'alimentation en eau potable ne sont plus présents dans cette UG en 2019; En moyenne sur la période 2000-2019, les restitutions représentent 24,3% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 2 730 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 23% sur le QMNA5 désinfluencé de 3% sur le QMNA2 désinfluencé. Les épisodes de sécheresse sur cette UG seront ains significativement plus intenses (diminution atteignant 0.05 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 73% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 10%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 3 au mois de juillet, le code 4 aux mois d'août et octobre et le code 5 au mois de septembre où le seuil de DB bas est franchi par les QMN5 désinfluencé et influencé et l'hydrologie devient naturellement très contraignante.	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 15% en moyenne sur la période juillet-août puis 40% entre septembre et octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 15% du QMN5 du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 5 aux mois d'août, septembre et octobre, c'est-à-dire que l'hydrologie deviendrait naturellement très contraignante pour les milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB bas.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 20 – Petite Blourde	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module mais très important pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Petite Blourde. Les indicateurs d'étiage en situation influencée sont réduits de 88% au maximum en comparaison (QMNA5 = -25 L/s) aux indicateurs en situation désinfluencée.	L'état fonctionnel des cours d'eau est considéré comme très perturbé. Les principaux facteurs sont les plans d'eau et la géologie défavorable au soutien d'étiage. L'amont de l'UG connait des écoulements faibles. Le manque d'eau est lié à la présence de plans d'eau (pertes par surévaporation), d'irrigation et d'une géologie empêchant le stockage de l'eau. La morphologie est également très altérée à cause des travaux hydrauliques (rectification et recalibrage). Les berges sont dégradées en lien avec le piétinement du bétail. Le potentiel d'habitat piscicole est donc dégradé sur la partie amont. La partie aval est moins impactée, puisque la morphologie est relativement naturelle malgré un ensablement important. Les écoulements sont limités en période d'étiage mais permanents.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 48% avec une proportion accentuée en période estivale) et de l'irrigation (48% des prélèvements), puis vient ensuite l'abreuvement (4%). L'alimentation en eau potable et les activités industrielles ne sont pas présentes dans cette UG entre 2000 et 2019. En moyenne sur la période 2000-2019, les restitutions représentent 13,7% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 5 367 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 20% sur le QMNA5 désinfluencé et de 37% sur le QMNA5 influencé. Les épisodes de sécheresse sur cette UG seront ainsi significativement plus intenses (diminution atteignant 0.03 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 44% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 63%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible. On retrouve les typologies de code 0 au mois de mai puis de code 1 au mois de juin où le DB haut n'est pas franchi par le QMN5 désinfluencé. On retrouve le code 4 aux mois de juillet, août et octobre le code 5 au mois de septembre où le seuil de DB bas est franchi par les QMN5 désinfluencé et influencé et l'hydrologie devient naturellement très contraignante. j f m a m j j a s o n d 0 0 1 4 4 5 4	L'effet seul du changement devrait influencer les étiages (diminution d'environ 20% en moyenne sur la période juilletoctobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août et septembre avec des diminutions de plus de 10% du QMN5 du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 5 aux mois d'octobre, c'est-à-dire que l'hydrologie resterait naturellement très contraignante aux milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB bas.
UG 21 – Vienne à Chauvign Y	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et faible pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Vienne à Chauvigny. Les indicateurs d'étiage en situation influencée sont réduits de 15,3% au maximum en comparaison (VCN30(5) = -2560 L/s) aux indicateurs en situation désinfluencée.	Le peuplement piscicole de la Vienne médiane est cohérent. Il est dominé par des cyprinidés d'eaux vives et est complété par des espèces affectionnant les eaux plus calmes. Cette forte diversité d'espèces reflète la bonne diversité des habitats de la Vienne médiane. La grande majorité du linéaire est caractérisé par des écoulements libres qui permettent le développement des espèces rhéophiles. Certaines zones plus calmes de types bras morts, bras secondaires et annexes hydrauliques abritent les brochets et ses espèces accompagnatrices, espèces préférant les écoulements lents, les eaux plus réchauffées et les fonds végétalisés. Le développement de ces espèces d'eaux calmes est aussi favorisé par la création de retenues à l'amont des seuils présents sur la Vienne. Le brochet est bien représenté dans les résultats de pêche. Cette espèce parvient à accomplir son cycle biologique. La Vienne aval dispose d'une capacité d'accueil très intéressante, d'une ressource en proies élevée et de nombreuses petites frayères. Il n'existe pas vraiment de grandes frayères de type grandes prairies inondables dans le lit majeur mais la forte occurrence de zones annexes calmes présentant une végétation adaptée pour sa fraie permet à l'espèce de s'adapter. Les affluents de la Vienne sont plus dégradés que le cours principal de la Vienne. Ils subissent directement les pressions agricoles et les modifications d'occupation du sol.	Les prélèvements majoritaires proviennent des activités industrielles (près de 97% des prélèvements), vient ensuite l'alimentation en eau potable (1% des prélèvements), la surévaporation des plans d'eau (1%), l'Abreuvement (moins de 1%) et l'irrigation (1%). En moyenne sur la période 2000-2019, les restitutions représentent 56,9% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 118 187 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 9% sur le QMNAS désinfluencé et de 7% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 3.05 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 1% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 3%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est peu visible du fait de la réalimentation de l'axe principal de la Vienne. En l'absence de débit biologique défini sur ce secteur, il n'est pas possible d'étudier les typologies de l'hydrologie décrites pour les autres UG.	L'effet seul du changement climatique devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-août puis 15% entre septembre et octobre); L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 5% du QMN5.
UG 22 – Dive	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module et faible pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Dive. Les indicateurs d'étiage en situation influencée sont réduits de 20% au maximum en comparaison (QMNA5 = -22 L/s) aux indicateurs en situation désinfluencée.	La Dive subit de fortes pressions anthropiques. La quasi-totalité de son linéaire est aménagé ou chenalisé. La forte densité de plans d'eau impacte le peuplement piscicole. Les pratiques agricoles s'intensifient sur ce bassin versant. De nombreuses stations d'épuration rejettent leurs eaux dans la Dive. Les étiages sont sévères et assèchent une grande partie du linéaire. Ces étiages sont fortement liés à des prélèvements des plans d'eau et de l'irrigation. L'ensemble de ces problématiques empêche le déroulement du cycle biologique de la truite fario. Seule l'extrême aval dispose d'un potentiel de développement des espèces piscicoles. Le peuplement est salmonicole et l'espèce repère est la truite fario, cependant, l'état dégradé empêche la pérennité des espèces salmonicoles.	Les prélèvements majoritaires proviennent de l'irrigation (près de 48% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (37% des prélèvements), la surévaporation liée aux plans d'eau (13%) et l'Abreuvement (2%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 14% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 12 586 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 17% sur le QMNA5 désinfluencé et de 25% sur le QMNA5 influencé. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.03 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 17% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 21%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible notamment dû à la surévaporation liée aux plans d'eau qui est très importante dans cette UG. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 1 aux mois de juillet à octobre, où le seuil de DB haut est franchi uniquement par le QMN5 influencé. j f m a m j j a s o n d 0 0 0 1 1 1 1	L'effet seul du changement devrait influencer les étiages (diminution d'environ 5% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 5% du QMN5 du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 3 aux mois de septembre et octobre, c'est-à-dire que l'hydrologie resterait favorable aux milieux mais l'impact quantitatif des usages anthropiques existants sur les milieux s'accentuerait ce qui aggraverait la situation et donc des QMN5 désinfluencés et influencés en dessous du seuil de DB haut.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 23 – Vienne à la confluen ce avec le Clain	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, faible pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Vienne à la confluence avec le Clain. Les indicateurs d'étiage en situation influencée sont réduits de 14,4% au maximum en comparaison (QMNA5 = -2770 L/s) aux indicateurs en situation désinfluencée.	Le contexte Vienne aval est caractérisé par des pressions urbaine et industrielle fortes. Le lit majeur de la Vienne est donc très aménagé ce qui réduit considérablement la connectivité latérale du cours d'eau. Cette partie de la Vienne présente donc une capacité de recrutement limitée pour le brochet. La morphologie des affluents est également très dégradée par les aménagements réalisés à des fins urbains et agricoles.	Les prélèvements majoritaires proviennent de l'irrigation (près de 71% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (19% des prélèvements), la surévaporation liée aux plans d'eau (5%), l'industrie (4%) et l'Abreuvement (1%). En moyenne sur la période 2000-2019, les restitutions représentent 29,6% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 16 111 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 9% sur le QMNA5 désinfluencé et de 7% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 3.35 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 2% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 3%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible. En l'absence de débit biologique défini sur ce secteur, il n'est pas possible d'étudier les typologies de l'hydrologie décrites pour les autres UG.	L'effet seul du changement climatique devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-août puis 15% entre septembre et octobre); L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en septembre avec des diminutions de plus de 5% du QMN5.
UG 24 – Ozon	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module mais faible pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de l'Ozon. Les indicateurs d'étiage en situation influencée sont réduits de 13% au maximum en comparaison (QMNA5 = -12,7 L/s) aux indicateurs en situation désinfluencée.	L'Ozon est un cours d'eau fortement modifié, avec la quasi-totalité de son linéaire recalibré ou rectifié. Les écoulements sont également influencés par la présence d'ouvrages rompant la continuité hydraulique. De manière générale, les travaux d'aménagements hydrauliques détruisent les habitats piscicoles naturels et ralentissent les écoulements. De nombreux plans d'eau se trouvent en amont de l'UG sur les affluents. Le bassin se caractérise par des étiages sévères sur l'ensemble du linéaire en lien avec les nombreux prélèvements dans les plans d'eau et le cours d'eau pour l'irrigation, ainsi qu'à la géologie à l'amont du bassin versant empêchant le stockage de l'eau. L'espèce repère à l'amont de l'Ozon sont les truites farios, et à l'aval les brochets. Mais les habitats favorables au développement de ces espèces, plus particulièrement pour la truite, sont dégradés par les travaux agricoles et les plans d'eaux qui modifient la composition des peuplements. Les espèces les plus abondamment retrouvées sont des espèces d'eaux calmes. Des espèces telles que le chevesne, le chabot, le gardon, la perche commune sont retrouvées.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 39% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (36% des prélèvements), l'irrigation (17%) et l'Abreuvement (7%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 57,6% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 744 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 6% sur le QMNA5 désinfluencé et de 30% sur le QMNA5 influencé. Les épisodes de sécheresse sur cette UG seront ainsi significativement plus intenses (diminution atteignant 0.01 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 12% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 9%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMNS désinfluencé ou influencé. On retrouve des typologies de code 1 aux mois de juillet à octobre, où le seuil de DB haut est franchi uniquement par le QMN5 influencé. j f m a m j j a s o n d 0 0 0 1 1 1 1	L'effet seul du changement devrait influencer modérément les étiages (diminution d'environ 7% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août avec des diminutions de 10% du QMN5. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 3 aux mois de septembre et octobre, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB haut.
UG 25 – Envigne	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est positif sur l'aspect quantitatif de ce cours d'eau. En effet, les volumes rejetés étant plus importants que les volumes prélevés les indicateurs influencés sont plus élevés que les indicateurs d'étiage en situation influencée sont augmentés de 4,5% au maximum en comparaison (VCN30(5) = +4,1 L/s) aux indicateurs en situation désinfluencée.	Le bassin de l'Envigne est un ancien système de marais qui a subi d'importantes modifications ces dernières décennies avec l'impact des travaux de recalibrage sur le linéaire et la chenalisation du lit principal. L'occupation du sol est dominée par les cultures intensives de céréales De nombreux prélèvements pour l'irrigation sont présents, aggravant les problématiques d'écoulements faibles en périodes d'étiage et de nombreuses stations d'épuration rejettent leurs effluents dans le cours d'eau. Le domaine de peuplement est cyprinicole, avec pour espèce cible le brochet. La qualité piscicole est assez médiocre. Le brochet est présent mais les perturbations évoquées amènent à diminuer sa capacité de recrutement. Les principaux peuplements retrouvés sont les goujons, les épinochettes, les loches franches, les chevesnes et les chabots. On y retrouve également des espèces d'eaux calmes comme les brochets, les bouvières, les gardons, les carassins, les carpes et les perches.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (51% des prélèvements), puis de la surévaporation liée aux plans d'eau (près de 25% avec une proportion accentuée en période estivale), vient ensuite l'irrigation (21%) et l'abreuvement (3%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 140% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 1 275 m3/km².	On observe une diminution des indicateurs quinquennaux et biennaux secs, que ce soit en situation désinfluencée (impact à la baisse de 11% sur le QMNA5 désinfluencé) ou en situation influencée (-12% sur le QMNA5 influencé). Les épisodes de sécheresse de cette dernière seront plus intenses (diminution atteignant 0.01 m3/s pour les débits mensuels quinquennaux secs du mois d'août) ; Le VCN30(5) et le VCN30(2) désinfluencés devraient diminuer de 10% à l'horizon 2050.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible notamment dû à la surévaporation liée aux plans d'eau qui est très importante dans cette UG. On retrouve les typologies de code 0 entre les mois de mai et août où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 3 aux mois de septembre à octobre, où le seuil de DB haut est franchi les QMN5 désinfluencé et influencé. j f m a m j j a s o n d 0 0 0 0 0 3 3	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 20% en moyenne sur la période juillet-août). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août avec des diminutions de plus de 10% du QMN5. Toutefois, les typologies d'hydrologie ainsi rencontrées restent inchangées et le code resterait à 3 aux mois de septembre et octobre, c'est-à-dire que l'hydrologie resterait naturellement contraignante pour les milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB haut.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 26 – Vienne entre Clain et Creuse	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, faible pour le VCN30(2) et modéré pour le QMNA5 et le VCN30(5) sur l'hydrologie de la Vienne entre la confluence avec le Clain et la confluence avec la Creuse. Les indicateurs d'étiage en situation influencée sont réduits de 16,8% au maximum en comparaison (VCN30(5) = -3720 L/s) aux indicateurs en situation désinfluencée.	La partie aval de la Vienne est beaucoup plus urbanisée que ses parties amont. Plusieurs grandes villes bordant la Vienne s'enchaînent jusqu'à Port-de-Piles (Cenonsur-Vienne, Châtellerault, Antran, Ingrandes, Dangé-St-Romain, Les Ormes). Dans ce contexte, la Vienne présente une connectivité latérale très limitée. Les annexes et les zones inondables sont restreintes. La capacité de recrutement du brochet à l'aval de Cenon-sur-Vienne est donc faible. Quelques frayères sont connues mais elles ne sont pas nombreuses (bras mort à l'amont du pont des Ormes et annexes hydrauliques de Pussigny). Les pressions agricoles et industrielles sont également sources de perturbations et de dégradations sur cette partie de la Vienne. Sinon, le peuplement piscicole de ce contexte est diversifié et équilibré. La part de poissons d'eaux vives et similaires à celles des poissons d'eaux calmes. Les cyprinidés d'eaux vives sont moins représentés que dans le contexte Vienne médiane car la pente du contexte Vienne médiane car la pente du contexte vienne médiane car la pente du contexte aval est moitié plus faible ce qui limite les zones d'écoulement rapide.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (près de 66% avec une proportion accentuée en période estivale), vient ensuite l'irrigation (19% des prélèvements), la surévaporation liée aux plans d'eau (8%), l'Industrie (8%) et l'Abreuvement (mois de 1%). En moyenne sur la période 2000-2019, les restitutions représentent 53,6% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 16 466 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 5% sur le QMNA5 désinfluencé et de 5% sur le QMNA2 désinfluencé et de 5% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 4.01 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 2% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 4%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est visible tout au long de l'année mais atténué en période d'étiage du fait de la réalimentation de la Vienne. En l'absence de débit biologique défini sur ce secteur, il n'est pas possible d'étudier les typologies de l'hydrologie décrites pour les autres UG.	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-octobre); L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en octobre et septembre avec des diminutions de plus de 15% du QMN5.
UG 27 – Vienne aval	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, faible pour le QMNA5 et le VCN30(5) et modéré pour le VCN30(2) sur l'hydrologie de la Vienne aval. Les indicateurs d'étiage en situation influencée sont réduits de 13% au maximum en comparaison (QMNA5 = -5560 L/s) aux indicateurs en situation désinfluencée.	La Vienne présente une moindre dynamique hydrosédimentaire (pente de ligne d'eau plus faible) marquée par une certaine uniformité hydromorphologique avec une dominance de plats lents à profonds. Le substrat est essentiellement sableux. Au centre du chenal, la présence ponctuelle de groupements d'hydrophytes (potamots, renoncules) assure quelques habitats structurants pour la faune piscicole. On notera toutefois qu'en 2017, telle que sur la station de Chinon, les conditions hydrauliques et hydrologiques particulières ont favorisé le développement de systèmes algales (on notera en aparté que l'année 2017 a été marquée par le développement de cyanobactéries, microorganismes pouvant libérer des toxines potentiellement dangereuses). En berge, un substrat sableux domine. Près du 1/3 de linéaire de berge est recouvert par la jussie : cette espèce invasive très prolifique (qui limite l'expression de la végétation indigène) tend à uniformiser les habitats en berge. En revanche, cette végétation dense constitue un habitat très structuré et donc favorable à l'accueil de certaines espèces piscicoles (brochet, anguille).	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (près de 41% avec une proportion accentuée en période estivale), vient ensuite l'irrigation (40% des prélèvements), la surévaporation liée aux plans d'eau (17%), l'industrie (1%) et l'abreuvement (1%). En moyenne sur la période 2000-2019, les restitutions représentent 53,4% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 4 088 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 3% sur le QMNA5 désinfluencé et de 2% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 5.35 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 1% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 2%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très visible notamment dû à la surévaporation liée aux plans d'eau qui est très importante dans cette UG. On retrouve les typologies de code 0 entre les mois de mai et juillet et entre septembre et octobre où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 1 au mois d'août, où le seuil de DB haut est franchi uniquement par le QMN5 influencé. j f m a m j j a s o n d 0 0 0 0 1 0 0	L'effet seul du changement devrait influencer les étiages (diminution d'environ 5% en moyenne sur la période juillet-août puis de 20% en septembre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en juillet et septembre avec des diminutions de plus de 5% du QMN5. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 3 au mois de septembre, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux avec des QMN5 désinfluencés et influencé en dessous du seuil de DB bas.
UG 28 – Bourouse	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée (impact à la baisse de 3% sur le QMNA5 désinfluencé et de 2% sur le QMNA2 désinfluencé). Cette diminution est plus marquée en période estivale. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 5.35 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 1% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 2%.	La Bourouse est peu anthropisée au niveau de la station de débit biologique sélectionnée. Elle se caractérise par une ripisylve peu dense et un fort développement de la végétation dans son lit mineur. Les écoulements sont également assez faibles et les assecs très marqués en périodes estivales, impactant potentiellement les peuplements piscicoles sur le bassin versant. Son état écologique est classé comme « Moyen » dans l'état des lieux du SDAGE Loire Bretagne 2019.	Les prélèvements majoritaires proviennent de la surévaporation liée aux plans d'eau (près de 40% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (30% des prélèvements), l'irrigation (30%) et l'abreuvement (mois de 1%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 23,7% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 3 779 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 9% sur le QMNA5 désinfluencé et de 56% sur le QMNA5 influencé. Les épisodes de sécheresse de cette dernière seront ainsi significativement plus intenses (diminution atteignant 0.01 m3/s pour les débits mensuels quinquennaux secs du mois d'août); Le VCN30(5) désinfluencé diminuera de 10% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 9%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très significatif. On retrouve les typologies de code 0 en mai et 1 en juin où le DB haut n'est pas franchi par le QMN5 désinfluencé. On retrouve le code 4 aux mois de juillet à août puis le code 5 entre septembre et octobre, où le seuil de DB bas est par les QMN5 désinfluencé et influencé.	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en août, octobre et septembre avec des diminutions de 5% du QMNS du fait la surévaporation liée aux plans d'eau dans cette UG. Les typologies d'hydrologie ainsi rencontrées changent peu et le code passerait à 3 au mois de juin, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux.

Unité de gestion	Hydrologie	Milieux	Usages	Climat	Croisement H-M-U	Croisement H-M-U-C (Horizon 2050)
UG 29 – Manse	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est faible pour l'ensemble des indicateurs sur l'hydrologie de la Manse. Les indicateurs d'étiage en situation influencée sont réduits de 8% au maximum en comparaison (QMNA5 = -17 L/s) aux indicateurs en situation désinfluencée.	La majorité du bassin de la Manse est occupé par des grandes cultures. La pression anthropique s'illustre également par des anciens travaux hydrauliques dont la suppression des granulats qui accentuent l'érosion et l'abaissement du niveau de la rivière. Le domaine piscicole est intermédiaire et l'espèce repère est la truite fario. Cependant son état fonctionnel est dégradé ce qui empêche l'installation pérenne des populations de truites. Les espèces les plus abondamment retrouvées sont les vairons, les gardons, les goujons et les chevesnes.	Les prélèvements majoritaires proviennent de l'alimentation en eau potable (près de 47% avec une proportion accentuée en période estivale), vient ensuite l'irrigation (35% des prélèvements), la surévaporation liée aux plans d'eau (14%) et l'abreuvement (4%). Les activités industrielles ne sont pas présentes dans cette UG. En moyenne sur la période 2000-2019, les restitutions représentent 42,9% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 3 639 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 8% sur le QMNA5 désinfluencé et de 14% sur le QMNA5 influencé. Le VCN30(5) désinfluencé diminuera de 17% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 18%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très significatif. On retrouve les typologies de code 0 en mai puis de code 1 en juin et juillet où le DB haut n'est pas franchi par le QMN5 désinfluencé. On retrouve le code 3 aux mois d'août à octobre, où le seuil de DB haut est franchi par les QMN5 désinfluencé et influencé. J f m a m J J a S O n d 0 0 1 1 3 3 3	L'effet seul du changement devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à légèrement aggraver la situation des étiages notamment en juillet et août avec des diminutions de plus de 5% du QMN5. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 3 aux mois de juillet et août, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux avec des QMN5 désinfluencés et influencés en dessous du seuil de DB haut.
UG 30 – Veude	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est négligeable pour le module, modéré pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie de la Veude. Les indicateurs d'étiage en situation influencée sont réduits de 26,5% au maximum en comparaison (VCN30(5) = -40 L/s) aux indicateurs en situation désinfluencée.	Le bassin de la Veude est majoritairement occupé par des prairies et des cultures. L'état fonctionnel des milieux est dégradé. La dégradation est principalement liée aux anciens curages qui ont engendré: un élargissement de la rivière, une diminution de la lame d'eau, la suppression d'abris potentiels, une érosion des berges et une diminution des sites de fraie. De plus, le manque d'entretien des berges engendre une dégradation des habitats de bordure, un envasement et un encombrement des secteurs favorables à la reproduction. Enfin, les pratiques culturales agricoles ont amené à eutrophiser certains milieux. Les nombreux pompages présents dans le bassin versant aggravent les étiages en période estivale. D'un point de vue des caractéristiques piscicoles, le domaine est intermédiaire et les espèces repères sont les cyprinidés rhéophiles.	Les restitutions de cette unité de gestion sont dominées par les rejets d'assainissement non collectif représentant 44% des rejets totaux. L'assainissement non collectif (33% des restitutions) et les pertes d'alimentation en eau potable (22% des restitutions) complètent ces rejets. En moyenne sur la période 2000-2019, les restitutions représentent 52,3% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 2 189 m3/km².	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 18% sur le QMNA5 désinfluencé et de 21% sur le QMNA5 influencé. La baisse du débit sera plus visible en début d'étiage (juin) où l'on peut observer une diminution de 0,3 m3/s). Le VCN30(5) désinfluencé diminuera de 20% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 17%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très significatif. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 3 au mois de juillet puis le code 5 aux mois d'août à octobre, où le seuil de DB bas est franchi par les QMN5 désinfluencé et influencé. j f m a m j j a s o n d 0 0 0 3 5 5 5	L'effet seul du changement climatique devrait influencer significativement les étiages (diminution d'environ 15% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en juillet et septembre avec des diminutions de plus de 10% du QMN5. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 4 dès les mois de juin et juillet, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux en début de période de basses eaux avec des QMN5 influencés en dessous du seuil de DB bas.
UG 31 – Négron	La comparaison des résultats obtenus pour le régime influencé et désinfluencé met en évidence que l'impact des prélèvements et rejets est faible pour le module et modéré pour le VCN30(2), le QMNA5 et le VCN30(5) sur l'hydrologie du Négron. Les indicateurs d'étiage en situation influencée sont réduits de 20% au maximum en comparaison (QMNA5 = -11 L/s) aux indicateurs en situation désinfluencée.	L'état fonctionnel des milieux est perturbé. Les principaux facteurs limitants sont : les pollutions diffuses agricoles en nitrates qui eutrophisent les milieux en été ; les anciens curages qui ont dégradé les habitats ; les pratiques agricoles de drainage et de développement du peuplier. Ceci limite les zones tampons et augmentent la turbidité de l'eau. Le domaine piscicole est intermédiaire et les espèces repères sont les cyprinidés rhéophiles. Les principales espèces retrouvées sont le goujon, le vairon, le chevesne, le brochet. Le peuplement, malgré son état dégradé, est assez diversifié et dominé par les espèces d'eaux vives. Le brochet est également présent en aval.	Les prélèvements majoritaires proviennent de l'irrigation (près de 73% avec une proportion accentuée en période estivale), vient ensuite l'alimentation en eau potable (21% des prélèvements), la surévaporation liée aux plans d'eau (3%), l'abreuvement (2%) et l'industrie (1%). En 2019, le volume total prélevé est de l'ordre de 1 894 867 m³ contre un volume total restitué d'environ 378 468 m³. Ainsi, l'UG présente un prélèvement net de 1 516 399 m³ en 2019. En moyenne sur la période 2000-2019, les restitutions représentent 17,8% des prélèvements, le prélèvement net par km² sur cette UG entre 2000 et 2019 est de 10 046 m³/km²;	On observe une diminution généralisée des indicateurs quinquennaux et biennaux secs, que ce soit en situation influencée ou désinfluencée. Impact à la baisse de 15% sur le QMNA5 désinfluencé et de 33% sur le QMNA5 influencé. La baisse du débit sera plus visible en début d'étiage (juin) où l'on peut observer une diminution de 0,25 m3/s). Le VCN30(5) désinfluencé diminuera de 26% à l'horizon 2050 (par rapport à la période actuelle) et le VCN30(2) de 15%.	En période de basses eaux tout comme en hautes eaux, l'effet des usages sur l'hydrologie est très significatif. On retrouve les typologies de code 0 entre les mois de mai et juin où le DB haut n'est pas franchi par le QMN5 désinfluencé ou influencé. On retrouve le code 3 au mois de juillet puis le code 5 aux mois d'août à octobre, où le seuil de DB bas est franchi par les QMN5 désinfluencé et influencé. j f m a m j j a s o n d 0 0 0 3 5 5 5	L'effet seul du changement climatique devrait influencer significativement les étiages (diminution d'environ 10% en moyenne sur la période juillet-octobre). L'effet combiné du changement climatique et de l'évolution des usages conduit à aggraver la situation des étiages notamment en juillet avec des diminutions de 10% du QMN5. Les typologies d'hydrologie ainsi rencontrées changent et le code passerait à 4 dès les mois de juin et juillet, c'est-à-dire que l'hydrologie deviendrait naturellement contraignante pour les milieux en début de période de basses eaux avec des QMN5 influencés en dessous du seuil de DB bas.

4 Analyse de la gestion structurelle

4.1 Principes et méthodologie

L'objectif de cette étape est de définir des **valeurs de référence** sur le territoire d'étude pour améliorer la gestion quantitative de la ressource en eau. Il s'agit donc de déterminer des valeurs de débits objectifs d'étiage et de calculer des volumes prélevables qui s'y associent, à l'échelle des différentes unités cohérentes du territoire.

Dans le cadre de l'étude HMUC, la réflexion est menée à l'échelle de chaque unité de gestion. Cela permettra à la CLE de définir des seuils de gestion opérationnels pour chaque unité de gestion, comme encadré et prévu par le SDAGE Loire Bretagne. Les analyses données dans la présente phase permettront de la faire de manière éclairée.

La détermination des volumes prélevables et des débits objectifs d'étiage est conduite de manière conjointe, car ces notions sont intimement liées (voir paragraphe 4.1.1). Dans un contexte de gestion intégrée sur un bassin versant, les volumes prélevables et débits d'objectifs définis sur un tronçon amont entraînent une répercussion sur les résultats obtenus sur les tronçons aval. Un travail itératif sur les volumes et les débits objectifs d'étiage est donc nécessaire.

Ces débits objectifs d'étiage sont fixés sur la base :

- Des conditions hydrométriques associées au bon fonctionnement du milieu aquatique;
- ▶ De l'hydrologie du cours d'eau avec et sans influence des usages anthropiques, en situation actuelle et future ;
- ► Du principe de solidarité amont-aval.

Au vu de la situation contrainte du territoire et conformément aux dispositions du SDAGE, la réflexion sur la gestion structurelle est menée à l'échelle mensuelle, afin de tenir compte de la saisonnalité des problématiques et pour identifier des solutions précises aux problèmes en présence.

4.1.1 Calcul des débits objectifs d'étiage et des volumes prélevables – Scénario d'objectivation

4.1.1.1 Période de basses eaux : avril à octobre

Du fait de la configuration contrainte du territoire d'étude et de la variabilité des situations rencontrées au cours de la période de basses eaux, tel que mis en évidence par l'analyse croisée donnée au chapitre précédent, une analyse mensualisée de la gestion structurelle apparaît comme essentielle afin d'aboutir à une gestion de l'eau aussi équilibrée que possible entre les besoins des milieux et les besoins humains. Ainsi, un débit objectif d'étiage (DOE) et un volume prélevable (VP) sont calculés pour chaque mois de la période de basses eaux.

Dans le présent rapport, la démarche est déclinée au niveau de chaque unité de gestion afin de définir des DOE et des VP pour chacune d'entre elles. Lors de cette étape, on procède de manière itérative, de l'amont vers l'aval.

Pour chaque unité de gestion et chaque mois, une gamme de définition du DOE a été définie sur la base de critères hydrologiques (débits quinquennaux secs : QMN5 influencé et désinfluencé), d'usages de l'eau et biologiques (Débit biologique et pertes d'habitats) dont le synoptique est présenté en détail dans le rapport de phase 2. Le VP découle directement du positionnement du DOE.

Le calcul du volume prélevable est réalisé en faisant la différence entre le DOE et QMN5 désinfluencé puis en ajoutant les rejets moyens 2010-2019 et en soustrayant les prélèvements non réglementés (surévaporation des plans d'eau et les prélèvements pour l'abreuvement en milieu naturel). Dans le cadre du scénario d'objectivation, le DOE ne peut pas être fixé en dessous du débit biologique bas ce qui peut conduire à avoir des VP négatifs sur certaines UG ayant des problèmes quantitatifs. Ces UG sont donc analysées plus en détail afin de définir un scénario de gestion alternatif en étant éclairé par une analyse multicritère intégrant des indicateurs sociaux, économiques et environnementaux.

Pour chaque mois de la période de basses eaux (avril-octobre), un volume prélevable est déterminé. Ce VP sera réparti entre les 3 usages réglementés : eau potable, irrigation et industrie.

Cette démarche constitue une base de travail répondant à une interprétation stricte des principes de la gestion structurelle, à partir de laquelle il sera possible de procéder à des ajustements, en tenant compte des particularités des différentes unités de gestion.

4.1.1.2 Période hors période de basses eaux : novembre à mars

Pour l'ensemble de la période hors période de basses eaux, les seuils hivernaux sont définis en s'appuyant sur les dispositions 7D-5 à 7D-7 du SDAGE. Dans le cadre de l'étude, il est proposé d'appliquer les principes rappelés ci-dessus de la manière suivante :

- Définition, sur chaque mois de la période hivernale, d'un volume théoriquement disponible associé :
 - ➤ Si le débit mensuel moyen influencé est supérieur à 2.5 * module influencé et que le débit journalier est supérieur au module influencé, le VP est défini comme suit : VP = 0.4* module influencé chaque jour où le débit journalier est supérieur au module influencé (débit plancher) ;
 - ➤ Si le débit journalier influencé est supérieur au module influencé mais le débit mensuel est inférieur à 2.5 * module influencé, le VP est défini comme suit : VP = 0.2* module influencé ;
 - ➤ Si le débit journalier influencé est inférieur au module influencé, VP = 0. Ceci permet de limiter la potentialité d'altération des débits hivernaux naturels tout en conservant une marge pour subvenir aux besoins des usages. Dans les cas éventuels ou cette marge serait inférieure aux prélèvements nets moyens observés sur la période concernée, une réflexion au cas par cas est menée pour identifier un compromis satisfaisant.

Les VP ainsi définis concernent non seulement les prélèvements superficiels, mais également les prélèvements souterrains réalisés en nappe libre. En effet, il a pu être montré dans le cadre du volet hydrologie que les relations nappe-rivière sont très marquées sur le territoire aval du SAGE Vienne et dans le SAGE Vienne Tourangelle.

La démarche présentée pour la détermination de volumes théoriquement disponibles en période hors période de basses eaux est issue d'éléments purement réglementaires. Cependant, il convient de mentionner que ces derniers ont été établis dans une optique de préservation du bon fonctionnement des milieux.

On observe que les volumes prélevables en période hivernale obtenus par cette démarche sont souvent substantiellement supérieurs aux volumes moyens actuellement prélevés.

En effet, en période hivernale, au niveau de l'exutoire des unités de gestion, l'impact des usages sur les débits moyens mensuels reste très modéré, comme mis en évidence par les graphiques donnés pour chaque unité de gestion (Section 4.2). Or, sur cette période, les besoins des milieux en termes de débits sont :

- L'occurrence d'une fluctuation annuelle typique d'un régime pluvial, avec une période de hautes eaux et une période de basses eaux, ce qui s'observe sur toutes les unités de gestion y compris en régime influencé;
- L'occurrence de crues morphogènes et de débits suffisants pour permettre le décolmatage. S'agissant d'épisodes ponctuels, leur débit est largement supérieur aux moyennes mensuelles montrées dans les graphiques. En ce sens, l'impact des usages est d'autant plus faible

4.1.2 Précisions de certains choix effectués dans la détermination des DOE

Pour permettre la fixation des DOE et déterminer ainsi des volumes prélevables (VP), il est nécessaire de se baser sur des volumes de référence prélevés ou rejetés actuellement. Après la commission thématique n°6 qui s'est tenue le 13 septembre 2024, il a été convenu que la fixation des DOE d'un premier scénario de base pouvait tenir compte de :

- La moyenne des prélèvements pour l'eau potable entre 2010 et 2019
- La moyenne des prélèvements pour l'industrie entre 2010 et 2019
- Le percentile 90 des prélèvements pour l'irrigation entre 2010 et 2019
- Le rejets moyens (assainissement collectif, non collectif, pertes eau potable, industrie) entre 2010 et 2019

Ainsi, tous les volumes des usages de référence actuels repris dans la section 4.2 tiennent compte de ces choix techniques. Les rejets sont intégrés dès la phase de fixation du DOE ce qui permet ainsi de bénéficier de volumes complémentaires à répartir pour l'ensemble des usages réglementés. Concernant les volumes de référence, il a été demandé lors de la commission thématique n°6 du 13 septembre 2024, de mettre à disposition un comparatif entre les moyennes 2010-2019 et les percentiles 90 2010-2019 pour tous les usages réglementés : AEP, Irrigation, Industrie.

Lors de la commission thématique n°7 qui s'est tenue le 17 octobre 2024, le choix technique a été pris, après concertation avec les acteurs, de prendre en compte les débits observés aux stations hydrométriques lorsque ces dernières étaient disponibles sur les différentes UG (stations hydrométriques disponibles pour 24 UG). Ainsi, les QMN5 influencés présentés dans la section 6.2 correspondent aux QMN5 calculés sur la base des observations aux stations hydrométriques. Les QMN5 désinfluencés sont calculés en appliquant aux QMN5 observés les écarts entre les QMN5 influencés et QMN5 désinfluencés modélisés déterminés lors de la phase 1 (Cf. Rapport Hydrologie). L'utilisation de QMN5 basés sur les observations permet de fixer au plus juste et proche de la réalité les débits objectifs d'étiage. Pour les 7 UG où aucune station hydrométrique n'est disponible, les QMN5 resteront basés sur les simulations du modèle hydrologique (Cf. Rapport Hydrologie).

- Les éléments présentés dans la section 4.2 résultent d'une première application des synoptiques présentés en section 4.1.1. Il s'agit ici d'un scénario d'objectivation servant de base de travail qui sera amené à évoluer en fonction des futurs échanges lors des prochaines commissions thématiques. Dans les graphiques suivants, le choix a été fait de s'en tenir aux synoptiques au sens strict en fixant un DOE toujours supérieur ou égal au seuil de débit biologique bas. Cela peut avoir pour effet de donner des VP négatifs lors des mois où l'hydrologie est la plus contraignante et où le DOE est supérieur au QMN5 désinfluencé. Ces VP peuvent aussi être négatifs lorsque les prélèvements non réglementés (surévaporation liée aux plans d'eau et abreuvement du bétail) sont supérieurs aux VPM bruts.
- ► Ces VP sont donnés à titre d'exemple et il ne sera pas possible de définir des VP négatifs en finalité de l'étude. Ils permettent d'identifier rapidement les UG où de forts déficits existent entre les VP calculés et les usages actuels réglementés. Ces cas particuliers seront discutés en détails lors des futures instances dédiées au suivi de l'étude.

4.2 Détermination des débits et volumes de références – Scénario d'objectivation

4.2.1 Synthèse des résultats du scénario d'objectivation de la gestion structurelle

Cette section présente les débits objectifs d'étiage et les volumes prélevables déterminés par l'application du scénario d'objectivation (Tableaux suivants). Ce scénario d'objectivation suit strictement la méthodologie présentée en section 4.1.1 et ne permet pas de fixer un DOE en dessous du débit biologique bas même si aucun usage n'est possible car le volume prélevable est nul ou négatif.

Pour les VP hors période de basses eaux, les analyses montrent que les conditions de prélèvements sont très rarement réunies lors du mois de novembre car les débits des cours d'eau sont inférieurs au module. Globalement les volumes théoriquement disponibles hors période de basses eaux sont largement excédentaires en comparaison aux volumes actuellement prélevés hormis pour quelques UG situées à l'aval du bassin comme la Veude (UG 30) ou la Bourouse (UG 28) ou encore le Ruisseau du Palais qui fait l'objet de prélèvements importants réalisés par Limoges Métropole à destination de l'eau potable.

En période de basses eaux, ce scénario d'objectivation permet d'identifier 22 UG sur lesquelles il n'y aucun problème quantitatif pendant la période de basses eaux, c'est-à-dire que les volumes prélevables dégagés suite à la fixation du DOE mensuel respectant le besoin des milieux permettent de satisfaire les usages de références actuels au minimum 8 années sur 10.

Les résultats de l'application de ce scénario d'objectivation permettent également d'identifier 9 UG sur lesquelles certains mois de la période de basses eaux sont en déficit quantitatif (VP < volumes prélevés de références) pour l'ensemble des usages (pas d'abaissement du DOE en dessous du débit biologique bas). Les déficits quantitatifs en étiage sont observés principalement aux mois d'août et de septembre. Pour ces 9 UG, il a été convenu lors de la CLE du SAGE Vienne qui s'est tenue le 23 octobre 2024 et lors de la CLE du SAGE Vienne Tourangelle qui s'est tenue le 5 novembre 2024, d'adapter la méthodologie de phase 2 afin de travailler et de proposer des scénarios alternatifs de gestion structurelle pour trouver le meilleur équilibre entre les aspects environnementaux, sociaux et économiques. Une analyse multicritère intégrant l'ensemble des éléments techniques, contextuels, environnementaux, sociaux et économiques a été menée en parallèle pour éclairer les membres des CLE des deux SAGE concernés et les aider à choisir un scénario (Cf Section 4.3).

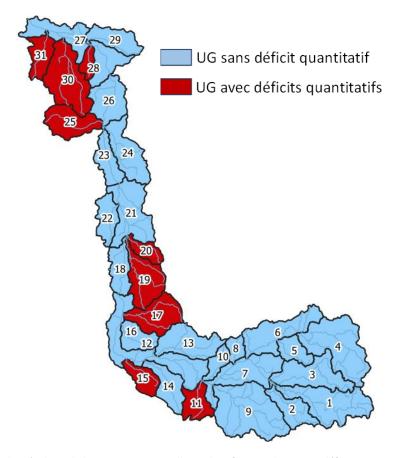


Figure 6 : Présentation des résultats de la gestion structurelle et identification des UG en déficit quantitatif suite à l'application du scénario d'objectivation de phase 2

DOE (L/s)	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre
UG1	8 250	6 990	4 810	3 290	2 610	2 320	2 920
UG2	2 485	2 150	1 472	970	805	750	885
UG3	6 600	6 208	3 664	3 006	4 883	7 867	6 405
UG4	3 920	3 730	2 190	1 200	840	800	1 070
UG5	1 825	1 590	1 000	645	500	455	570
UG6	12 200	10 900	7 000	5 825	4 595	3 555	3 360
UG7	40 750	37 800	25 300	17 890	16 610	19 010	17 920
UG8	634	812	625	325	240	185	220
UG9	5 340	4 470	2 800	1 726	1 370	1 225	1 572
UG10	940	820	530	340	250	270	330
UG11	941	900	500	180	90	83	130
UG12	49 350	46 700	31 300	20 585	17 980	20 215	19 805
UG13	2 640	1 920	975	450	300	300	400
UG14	1 190	910	430	210	180	180	220
UG15	845	745	452	195	116	116	135
UG16	530	340	230	120	67	67	102
UG17	950	665	425	145	116	125	140
UG18	49 240	47 710	31 720	20 470	17 590	19 990	19 640
UG19	660	560	210	120	120	120	120
UG20	290	196	87	40	40	40	40
UG21	-	-	-	-	-	-	-
UG22	229	196	144	120	100	110	120
UG23	-	-	-	-	-	-	-
UG24	310	270	180	130	100	110	140
UG25	420	310	125	62	62	62	62
UG26	-	-	-	-	-	-	-
UG27	98 000	88 000	64 500	37 500	30 400	36 800	38 900
UG28	124	112	80	46	40	40	40
UG29	440	410	290	210	185	210	230
UG30	800	550	275	250	250	250	250
UG31	-	-	-	-	-	-	-

Tableau 8 : Synthèse des DOE définis dans le cadre du scénario d'objectivation

	VP	Prélèvements		VP	Prélèvements		VP	Prélèvements		VP	Prélèvements	
_	Janvier	Janvier	Evolution en %	Février	Février	Evolution en %	Mars	Mars	Evolution en %	Avril	Avril	Evolution en %
UG1	4 661 263	75 450	6078%	3 745 658	67 566	5444%	4 161 842	66 603	6149%	35 158	36 337	-3%
UG2	1 109 857	20 099	5422%	998 871	20 099	4870%	1 154 251	20 099	5643%	46 244	20 099	130%
UG3	1 780 317	32 341	5405%	2 631 772	32 341	8038%	1 780 317	32 341	5405%	100 035	32 537	207%
UG4	1 894 942	49 939	3695%	2 396 544	48 130	4879%	1 560 540	45 909	3299%	60 590	48 932	24%
UG5	1 004 423	14 019	7065%	894 564	14 019	6281%	831 788	14 019	5833%	22 521	14 019	61%
UG6	7 290 427	65 627	11009%	8 910 522	62 948	14055%	7 406 148	62 627	11726%	73 658	62 627	18%
UG7	14 828 517	508 309	2817%	25 649 327	422 831	5966%	24 046 244	429 031	5505%	519 199	435 723	19%
UG8	220 370	556 239	-60%	151 979	554 608	-73%	205 172	642 947	-68%	541 756	383 512	41%
UG9	1 883 101	235 959	698%	2 160 027	203 942	959%	2 049 257	188 057	990%	273 430	174 672	57%
UG10	317 571	43 055	638%	280 210	41 503	575%	280 210	42 172	564%	227 999	31 349	627%
UG11	776 013	9 785	7831%	603 565	9 785	6068%	652 836	9 785	6572%	30 682	9 785	214%
UG12	25 827 456	2 558 907	1061%	30 992 948	2 528 790	1292%	26 344 006	2 560 891	1083%	2 281 453	2 186 772	4%
UG13	1 733 631	42 878	3943%	1 398 089	41 299	3285%	1 565 860	39 495	3865%	169 339	32 097	428%
UG14	752 463	3 731	20067%	564 347	3 568	15719%	632 753	3 836	16397%	41 995	5 936	608%
UG15	444 125	2 620	16854%	351 169	2 426	14378%	330 512	2 361	13899%	61 523	4 294	1333%
UG16	670 558	983	68132%	341 161	983	34615%	235 283	983	23841%	54 955	983	5492%
UG17	1 039 901	111 959	829%	679 936	112 670	503%	559 947	111 539	402%	151 320	110 047	38%
UG18	26 953 755	168 854	15863%	31 181 795	186 400	16628%	29 067 775	146 736	19710%	233 257	215 912	8%
UG19	899 994	42 918	1997%	659 995	42 566	1451%	269 998	33 583	704%	88 797	3 320	2575%
UG20	307 076	37 052	729%	225 189	39 904	464%	92 123	37 656	145%	47 226	6 958	579%
UG21												
UG22												
UG23												
UG24	180 179	9 766	1745%	175 438	12 054	1355%	0	6 808	-100%	65 140	19 174	240%
UG25	0	12 476	-100%	209 361	12 476	1578%	54 616	12 476	338%	62 989	21 778	189%
UG26												
UG27	63 781 547	10 798 038	491%	72 893 197	9 693 840	652%	28 636 613	9 845 996	191%	11 425 177	8 905 271	28%
UG28	69 793	6 685	944%	90 893	6 685	1260%	6 492	6 685	-3%	15 404	13 442	15%
UG29	195 753	4 995	3819%	102 325	4 995	1948%	124 570	4 995	2394%	112 193	47 658	135%
UG30	312 462	33 018	846%	451 334	30 193	1395%	156 231	31 472	396%	131 278	121 793	8%
UG31												
			T1-1	C + - \ \ / /	D -1/6:-:1 1-		:W-1-:+:	on nour les mois	-1 - 1	:1		

Tableau 9 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de janvier à avril

Ī		Prélèvements			Prélèvements			Prélèvements			Prélèvements	
_	VP Mai	Mai	Evolution en %	VP Juin	Juin	Evolution en %	VP Juillet	Juillet	Evolution en %	VP Août	Août	Evolution en %
UG1	126 200	38 680	226%	82 923	41 023	102%	118 922	45 709	160%	110 787	45 709	142%
UG2	65 807	21 268	209%	51 375	22 437	129%	43 416	24 774	75%	31 743	24 774	28%
UG3	642 551	35 466	1712%	404 228	39 054	935%	580 186	47 753	1115%	550 692	46 088	1095%
UG4	327 516	49 379	563%	242 259	55 337	338%	323 193	59 398	444%	290 354	60 170	383%
UG5	45 726	14 924	206%	21 140	15 828	34%	28 864	17 637	64%	25 548	17 637	45%
UG6	72 048	66 985	8%	75 182	72 254	4%	88 651	83 383	6%	199 379	85 955	132%
UG7	568 897	438 131	30%	582 016	493 750	18%	499 415	479 187	4%	549 721	517 587	6%
UG8	136 357	7 600	1694%	94 535	7 886	1099%	136 360	8 457	1512%	98 945	8 457	1070%
UG9	467 544	187 930	149%	361 534	205 299	76%	347 903	216 917	60%	269 543	211 473	28%
UG10	52 677	32 451	62%	95 375	36 226	163%	53 343	39 701	34%	57 004	37 568	52%
UG11	140 577	10 416	1250%	53 021	11 048	380%	59 682	12 310	385%	13 797	12 310	12%
UG12	2 292 973	2 195 256	4%	2 286 258	2 218 118	3%	2 301 586	2 264 142	2%	2 351 199	2 256 783	4%
UG13	486 989	34 639	1306%	289 963	45 927	531%	339 981	59 507	471%	186 261	52 376	256%
UG14	247 584	6 633	3632%	126 318	14 866	750%	160 296	23 435	584%	34 503	16 707	107%
UG15	116 340	5 726	1932%	77 377	11 656	564%	90 092	22 058	308%	15 738	14 478	9%
UG16	311 629	1 046	29688%	221 592	1 110	19871%	82 255	1 236	6553%	107 112	1 236	8563%
UG17	544 641	117 020	365%	316 576	123 994	155%	278 627	137 941	102%	65 674	137 941	-52%
UG18	258 770	255 806	1%	355 314	333 111	7%	472 191	469 303	1%	487 537	482 879	1%
UG19	566 839	3 487	16156%	381 028	3 654	10328%	-59 401	3 988	-1589%	-165 443	3 988	-4249%
UG20	282 649	7 271	3787%	209 324	10 424	1908%	88 483	15 312	478%	-48 560	13 274	-466%
UG21												
UG22												
UG23												
UG24	50 184	21 692	131%	86 798	29 670	193%	82 625	52 739	57%	64 345	54 183	19%
UG25	56 459	31 955	77%	64 113	36 313	77%	34 813	45 130	-23%	-63 884	48 530	-232%
UG26												
UG27	9 605 306	9 374 922	2%	11 681 046	10 250 405	14%	12 425 494	11 195 572	11%	12 156 827	11 030 747	10%
UG28	27 578	21 347	29%	36 010	26 768	35%	42 863	38 337	12%	-7 093	35 489	-120%
UG29	153 510	77 671	98%	175 263	109 401	60%	209 692	206 215	2%	130 886	123 038	6%
UG30	172 527	160 918	7%	267 352	252 802	6%	-114	428 096	-100%	-184 068	362 239	-151%
UG31												

Tableau 10 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de mai à août

Ī	VP	Prélèvements	Evolution	VP	Prélèvements	Evolution	VP	Prélèvements	Evolution	VP	Prélèvements	Evolution
	Septembre	Septembre	en %	Octobre	Octobre	en %	Novembre	Novembre	en %	Décembre	Décembre	en %
UG1	97 534	41 023	138%	55 911	38 680	45%	0	55 383	-100%	4 494 789	72 954	6061%
UG2	45 617	22 437	103%	49 131	21 268	131%	0	20 099	-100%	821 294	20 099	3986%
UG3	282 832	37 985	645%	112 689	34 428	227%	193 513	32 341	498%	1 161 076	32 341	3490%
UG4	200 245	51 845	286%	428 629	51 660	730%	0	46 978	-100%	2 006 409	46 320	4232%
UG5	18 883	15 828	19%	22 026	14 924	48%	0	14 019	-100%	690 541	14 019	4826%
UG6	95 552	87 688	9%	97 501	76 149	28%	0	70 290	-100%	4 860 285	64 449	7441%
UG7	456 706	434 884	5%	463 296	451 792	3%	0	432 578	-100%	19 637 766	885 907	2117%
UG8	106 552	7 886	1251%	142 201	7 600	1771%	68 391	253 035	-73%	296 360	253 035	17%
UG9	298 891	191 896	56%	334 706	192 279	74%	0	182 491	-100%	1 772 330	180 608	881%
UG10	76 200	33 436	128%	248 893	34 065	631%	84 063	36 296	132%	317 571	43 370	632%
UG11	-27 976	11 048	-353%	15 719	10 416	51%	0	9 785	-100%	541 977	9 785	5439%
UG12	2 286 307	2 187 600	5%	2 273 845	2 189 863	4%	0	2 530 336	-100%	21 695 063	2 565 850	872%
UG13	151 077	34 498	338%	331 007	33 585	886%	0	36 407	-100%	1 090 510	43 364	2415%
UG14	101 777	4 908	1974%	277 344	3 937	6944%	85 507	3 691	2216%	547 246	3 483	15610%
UG15	-87 004	3 996	-2277%	26 900	2 814	856%	0	2 620	-100%	320 183	1 908	16680%
UG16	61 457	1 110	5439%	92 547	1 046	8746%	47 057	983	4688%	482 331	983	48979%
UG17	125 065	123 994	1%	408 753	117 347	248%	99 991	110 801	-10%	779 926	111 433	600%
UG18	385 487	366 666	5%	304 238	301 835	1%	0	244 981	-100%	20 611 695	207 641	9827%
UG19	-183 216	3 654	-5114%	-70 371	10 862	-748%	0	21 241	-100%	524 996	39 238	1238%
UG20	-51 203	19 969	-356%	37 322	12 442	200%	0	22 976	-100%	179 128	45 730	292%
UG21												
UG22												
UG23												
UG24	61 732	54 462	13%	74 085	44 507	66%	0	30 254	-100%	37 932	8 062	371%
UG25	-26 855	37 291	-172%	120 955	33 007	266%	0	22 207	-100%	0	18 891	-100%
UG26												
UG27	11 593 580	10 729 440	8%	11 428 652	10 946 270	4%	0	10 403 088	-100%	32 541 606	10 398 564	213%
UG28	-22 404	15 246	-247%	-11 976	7 117	-268%	0	6 685	-100%	0	6 685	-100%
UG29	76 122	49 982	52%	57 763	5 317	986%	0	4 995	-100%	35 591	4 995	613%
UG30	-98 917	133 151	-174%	157 570	32 739	381%	0	32 266	-100%	0	34 331	-100%
UG31												

Tableau 11 : Synthèse des VP définis dans le cadre du scénario d'objectivation pour les mois de septembre à décembre

4.2.2 Evolutions futures

La méthode présentée à ce stade s'appuie sur des valeurs définies sur la période 2000-2019 uniquement. Or, en tant que démarche HMUC, la présente étude doit intégrer la prise en compte du changement climatique à venir dans le cadre de la fixation des seuils de gestion.

Pour l'horizon 2050, il existe une incertitude liée à la modélisation. En effet, l'analyse du futur du climat est par essence incertaine, et il convient de rappeler que celle réalisée dans le cadre de la présente étude s'appuie sur un modèle climatique et un scénario climatique (le RCP 4.5), qui par ailleurs peut aujourd'hui être considéré comme relativement optimiste, d'après les derniers travaux du GIEC.

De ce fait, il apparaît plus opportun d'évaluer les volumes prélevable actuels à l'aide des données observées disponibles, et de prévoir, à moyen terme, une mise à jour des analyses présentement restituées sur la base des nouvelles observations qui seront alors disponibles. Cela permettra d'envisager l'adaptation des seuils de gestion sur la base de connaissances robustes. En effet, si l'hydrologie peut être amenée à évoluer rapidement, les besoins des milieux, eux, s'adapteront avec beaucoup plus d'inertie. Pour ces raisons, une réévaluation fréquente de l'hydrologie est préconisée, afin de vérifier l'adéquation des volumes prélevables définis ici dans les temps à venir.

Néanmoins, afin de disposer d'une perspective quantifiée des volumes prélevables de demain, les volumes prélevables théoriques de l'horizon 2050 ont été estimés en remplaçant la formule « VP = QMN5_désinfluencé (2000-2019) – DOE – prélèvements non réglementés + rejets » par la formule « VP = QMN5_désinfluencé (horizon 2050) – DOE – prélèvements non réglementés + rejets ». En d'autres termes, on évalue l'effet sur les volumes prélevables de l'évolution de l'hydrologie désinfluencée, en considérant des DOE constants².

Les résultats de cette approche sont présentés dans la figure ci-dessous. Une forte diminution des volumes prélevables en période de basses eaux est à anticiper et à l'horizon 2050, il y aurait 24 UG qui seraient en déficit quantitatif alors qu'il n'y en a que 9 actuellement. En conservant le DOE actuellement défini entre les mois de juillet et octobre, les VP de toutes les UG sont fortement diminués et deviennent même nuls certains mois sur plusieurs UG.

Par ces analyses, on identifie un fort besoin d'adaptation, non seulement pour préserver la ressource en eau actuelle, mais également pour pérenniser cette préservation dans le futur. Effectivement, le changement climatique amènera à réviser les volumes prélevables dans un avenir proche (en tenant compte des évolutions qui auront eu lieu en termes d'hydrologie, d'usages, d'aménagement du territoire et de fonctionnement des milieux), très probablement à la baisse. Ainsi, des actions de court terme (adaptation des pratiques consommatrices d'eau), mais également de plus long terme (poursuite de l'adaptation des pratiques et mesures d'aménagement du territoire, dont la restauration de cours d'eau et des zones humides) devront être envisagées pour atteindre cet objectif.

_

² Il est important de noter que l'augmentation de la température des cours d'eau, non prise en compte ici, peut être nécessiter une augmentation des débits biologiques.

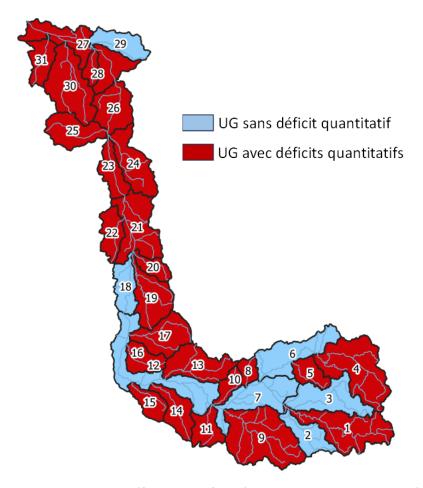


Figure 7 : Présentation des UG qui seraient en déficit quantitatif sous l'impact du changement climatique à l'horizon 2050 en appliquant le scénario d'objectivation de phase 2

4.3 Méthodologie développée pour la définition de la gestion structurelle adaptée aux UG en déficit quantitatif

Il a été convenu lors de la CLE du SAGE Vienne qui s'est tenue le 23 octobre 2024 et lors de la CLE du SAGE Vienne Tourangelle qui s'est tenue le 5 novembre 2024 de proposer des scénarios alternatifs de gestion structurelle pour trouver le meilleur équilibre entre les aspects environnementaux, sociaux et économiques sur les 9 UG en déficit quantitatif en période de basses eaux (VP < volumes prélevés de références).

Les 9 UG concernées sont les suivantes :

- Aixette (UG 11)
- Graine (UG 15)
- Issoire (UG 17)
- Grande Blourde (UG 19)
- Petite Blourde (UG 20)
- Envigne (UG 25)
- Bourouse (UG 28)
- Veude (UG 30)
- Négron (UG 31)

Plusieurs options seront approfondies :

- L'étude HMUC vise à définir des volumes théoriquement disponibles hors période de basses eaux (novembre-mars) qui permettraient d'avoir recours à de la substitution, solutionnant ainsi en tout ou partie les déficits quantitatifs des mois d'étiage tout en gardant un DOE permettant de respecter les besoins des milieux (seuil bas de la gamme des débits biologiques).
- ► La possibilité d'évolution des usages actuels face aux problèmes quantitatifs récurrents sous l'effet du changement climatique.
- ► La possibilité de faire déroger le débit objectif en l'abaissant en dessous du seuil bas de débit biologique.

Les scénarios de gestion permettront d'identifier l'impact des choix envisagés sur l'hydrologie, les milieux aquatiques et les usages, et d'accompagner les acteurs du territoire dans le cadre de la définition d'une politique de gestion de l'eau équilibrée et durable.

Une analyse multicritère intégrant l'ensemble des éléments techniques, contextuels, environnementaux, sociaux et économiques est menée en parallèle pour éclairer les membres des CLE des deux SAGE concernés et les aider à choisir un scénario de gestion structurelle.

4.3.1 Scénarios de gestion développés par UG en déficit quantitatif

Pour les 9 unités de gestion en déficit quantitatif plusieurs scénarios ont été proposés et travaillés lors des 4 comités techniques locaux organisés en janvier 2025 sur les territoires des SAGE Vienne et SAGE Vienne Tourangelle. Ces scénarios sont présentés en détails dans la suite de cette section. Toutefois, il est important de noter que l'ensemble des scénarios n'ont pas été systématiquement testés pour chaque UG en déficit quantitatif. Les scénarios ont évolué de manière itérative en fonction des échanges lors de ces comités techniques qui ont permis de les affiner pour chaque UG en fonction de leur situation hydrologique et socio-économique spécifique.

4.3.1.1 Scénario diagnostic

Le premier scénario testé est le scénario diagnostic. Comme cela a été présenté dans la section 4.2, certaines UG en déficit quantitatif ont un DOE mensuel qui est parfois supérieur au QMN5 désinfluencé lorsque celui-ci est fixé au niveau de la gamme basse de débit biologique. Cela conduit à obtenir des volumes prélevables négatifs et une situation qui est donc irréaliste vis-à-vis de la capacité des cours d'eau à atteindre et respecter ces DOE 8 années sur 10 même si tous les usages étaient retirés (usages réglementés ou non réglementés).

Le scénario diagnostic prévoit donc d'abaisser le DOE en dessous du débit biologique afin de se placer au plus près du QMN5 désinfluencé. Cela permet de ramener un VP supérieur ou égal à 0 m3 tout en fixant un DOE plus réaliste et atteignable 8 années sur 10 par une hydrologie désinfluencée (Figure 8).

Figure 8 : Comparaison de l'application du scénario d'objectivation (à gauche) et du scénario diagnostic (à droite) — Exemple de la Veude (UG 30)

4.3.1.2 Scénario « Agrégation temporelle »

Le scénario diagnostic permet de fixer un DOE qui est théoriquement atteignable 8 années sur 10 vis-à-vis de la capacité hydrologique du cours d'eau mais il conduit à obtenir des VP nuls certains mois. Cela signifie qu'aucun prélèvement ne serait possible lors de ce mois donné que ce soit pour les usages prioritaires (Eau potable) ou pour les autres usages réglementés (irrigation et industrie). En revanche, il existe des périodes excédentaires où les prélèvements actuels sont inférieurs aux VP déterminés.

La nouvelle version du guide HMUC (publiée en 2024) ouvre la possibilité de procéder à des agrégations de VP pour des mois successifs en plusieurs périodes. Cette opération ouvre la possibilité de prélever ces volumes cumulés par sous-période à tout moment au sein de cette même sous-période.

Toutefois, il est important de noter que le rapport publié en mai 2024 par l'Inspection Générale des l'Environnement et du Développement Durable (IGEDD) et par le Conseil Général de l'Alimentation de l'Agriculture et des Espaces Ruraux (CGAAER) faisant un retour d'expérience sur les analyses HMUC dans le bassin Loire Bretagne considère qu'une fongibilité entre des volumes prélevables définis à l'échelle mensuelle est toujours porteuse de risque pour le milieu, accroissant in fine l'insécurité pour les usages, et qu'une répartition mensuelle est un schéma à privilégier. Le rapport précise :

« Dans la stratégie d'évaluation des volumes prélevables, prescrire l'identification de volumes prélevables pour chaque mois de la période de basses eaux. Si des fusions de volumes prélevables mensuels sont envisagés, celles-ci sont à débattre en CLE et la démarche HMUC doit évaluer les risques encourus. En tout état de cause, toute fusion entre les volumes prélevables mensuels jusqu'au 30 juin et les volumes prélevables mensuels à compter du 1^{er} juillet est à exclure. ».

C'est en ce sens que les scénarios proposés dans le cadre de l'étude HMUC Vienne - Vienne Tourangelle favoriseront systématiquement une gestion structurelle mensuelle avec des VP déterminés chaque mois de la période de basses eaux. Toutefois, malgré les risques évoqués ci-dessus, des scénarios intégrant de l'agrégation temporelle ont été discutés et proposés pour les UG où aucun VP n'était disponible certains mois. Deux scénarios ont été retenus et testés pour réaliser cette agrégation temporelle.

4.3.1.2.1 Scénario « Agrégation temporelle maximisée »

Le scénario « Agrégation temporelle maximisée » prend en compte la fixation des sous-périodes sur lesquelles les agrégations de VP sont réalisées tout en conservant les mêmes DOE fixés lors du scénario « Diagnostic ». La définition de ces sous-périodes a été discutée pour chaque UG et les échanges se sont orientés vers la définition de deux sous-périodes : une première sous-période entre avril et juin et une deuxième sous-période entre juillet et octobre. Le cumul des VP des mois successifs est effectué en additionnant la totalité des VP déterminés après la fixation du DOE. Cela signifie que lorsque les VP (barres jaunes ; Figure 9) sont supérieurs aux volumes des prélèvements de référence (barres grises ; Figure 9), alors les VP excédents sont cumulés dans les VP agrégés par sous période.

Dans l'exemple donné dans la Figure 9, les VP excédentaires du mois d'octobre (VP = 157 000 m3) présentés dans le scénario « Diagnostic » sont intégralement intégrés dans les VP agrégés dans la souspériode juillet-octobre du scénario « Agrégation temporelle maximisée ». Ces VP de 157 000 m3 peuvent donc être virtuellement prélevés à n'importe quel mois de la sous-période juillet-octobre.

Concernant la sous-période avril-juin, l'agrégation des VP du scénario « Diagnostic » conduit à obtenir des VP supérieurs aux prélèvements actuels de référence. Tenant compte du fait que le printemps est une période spécifique concernant les besoins des milieux qu'il est important de préserver (migration, reproduction) et des objectifs de sobriété du Plan Eau 2023, il a été convenu de seuiller les VP agrégés lorsqu'ils dépassent les prélèvements actuels de référence dans une sous période donnée. Dans la Figure 9, les VP excédentaires des mois d'avril à juin du scénario « Diagnostic » se retrouvent seuillés et strictement égaux aux prélèvements actuels de référence (barres grises = barres jaunes dans la période avril-juin ; Figure 9).

Ce scénario « Agrégation temporelle maximisée » conduit à agréger le maximum de VP possible par souspériode mais conduit à faire peser un risque plus important pour les milieux car il masque davantage le déficit réel des mois d'étiage (par exemple entre juillet et septembre dans la Figure 9). En effet, le prélèvement d'eau au mois d'août alors que cette eau est virtuellement disponible au mois d'octobre conduira à entrer plus de 2 années sur 10 en gestion de crise. Cette intégration maximisée intégrant tous les VP excédentaires de chaque mois conduit à sous-estimer le déficit réel ce qui pourra avoir pour conséquence de mal dimensionner les éventuelles solutions mises en place pour combler les déficits (stockages de volume de substitution par exemple).

Scénario « Diagnostic »

Scénario « Agrégation temporelle maximisée »

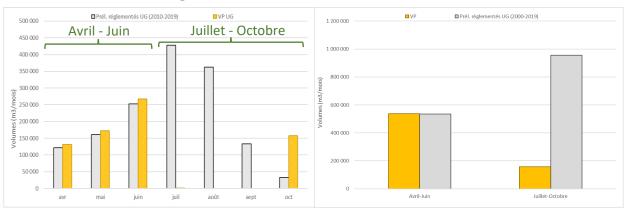


Figure 9 : Comparaison des VP déterminés entre le scénario « Diagnostic » et le scénario « Agrégation temporelle maximisée » — Exemple de la Veude (UG 30)

4.3.1.2.2 Scénario « Agrégation temporelle seuillée »

Le scénario « Agrégation temporelle seuillée » prend en compte la fixation des sous-périodes sur lesquelles les agrégations de VP sont réalisées tout en conservant les mêmes DOE fixés lors du scénario « Diagnostic ». Les sous-périodes sont équivalentes au scénario « Agrégation temporelle maximisée » : une première sous-période entre avril et juin et une deuxième sous-période entre juillet et octobre. Contrairement au scénario « Agrégation temporelle maximisée », le cumul des VP des mois successifs est effectué en additionnant les VP mensuels strictement seuillés au niveau des prélèvements actuels de référence. Cela signifie que lorsque les VP (barres jaunes ; Figure 10) sont supérieurs aux volumes des prélèvements de référence (barres grises ; Figure 10), alors les VP excédents sont laissés disponibles pour les milieux et ne sont pas cumulés dans les VP agrégés par sous période.

Dans l'exemple donné dans la Figure 10, les VP du mois d'octobre présentés dans le scénario « Diagnostic » sont seuillés au niveau des prélèvements actuels (VP = 32 000 m3) avant d'être intégrés dans les VP agrégés de la sous-période juillet-octobre du scénario « Agrégation temporelle seuillée ». Ces VP de 32 000 m3 peuvent être virtuellement prélevé à n'importe quel mois de la sous-période juillet-octobre.

Concernant la sous-période avril-juin, l'agrégation des VP seuillés mensuellement du scénario « Diagnostic » conduit à obtenir des VP strictement égaux aux prélèvements actuels de référence (barres grises = barres jaunes dans la période avril-juin ; Figure 10).

Ce scénario « Agrégation temporelle seuillée » conduit à limiter le cumul des VP possibles par souspériode et permet de faire peser un risque moins important pour les milieux que le scénario « Agrégation temporelle maximisée ». En effet, le scénario « Agrégation temporelle seuillée » réduit le biais de l'estimation du déficit réel des mois d'étiage (entre juillet et septembre dans la Figure 9). Toutefois, même si le risque est réduit, il demeure présent. En effet, le prélèvement d'eau au mois d'août alors que cette eau est virtuellement disponible au mois d'octobre, même si le volume est moins conséquent, conduira à entrer plus de 2 années sur 10 en gestion de crise. Cette agrégation seuillée intégrant des VP seuillés mensuellement conduit à estimer plus justement le déficit réel d'une UG au cœur de l'étiage ce qui permettra de mieux dimensionner les éventuelles solutions mises en place pour combler les déficits (stockages de volume de substitution par exemple).

Scénario « Diagnostic »

Scénario « Agrégation temporelle seuillée »

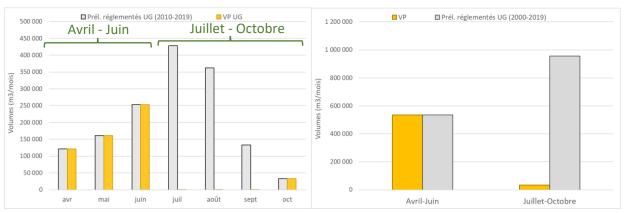


Figure 10 : Comparaison des VP déterminés entre le scénario « Diagnostic » et le scénario « Agrégation temporelle seuillée » — Exemple de la Veude (UG 30)

4.3.1.3 Scénario « Agrégation temporelle avec stockage »

L'étude HMUC Vienne – Vienne Tourangelle permet de définir des volumes théoriquement disponibles hors période de basses eaux (novembre-mars) qui permettraient d'avoir recours à de la substitution, solutionnant ainsi en tout ou partie les déficits quantitatifs des mois d'étiage tout en gardant un DOE permettant de respecter les besoins des milieux (seuil bas de la gamme des débits biologiques). Pour rappel, selon la définition donnée dans le SDAGE 2022-2027, un volume de substitution est le volume des prélèvements en période de basses eaux qui est transféré hors période de basses eaux. Ces volumes seraient fournis par des retenues de substitution permettant de stocker l'eau par des prélèvements anticipés hors période de basses eaux ne mettant pas en péril les équilibres hydrologiques qui viendraient en remplacement de prélèvements existants. Les scénarios proposés dans cette section prennent en compte la possibilité d'avoir recours à des volumes de substitution pour augmenter les VP à la hauteur des prélèvements actuels de référence.

4.3.1.3.1 Scénario « Agrégation temporelle maximisée avec stockage»

Le scénario « Agrégation temporelle maximisée avec stockage » reprend les résultats du scénario « Agrégation temporelle maximisée » et propose de combler le déficit de volume sur la période juillet-août par le recours à des volumes de substitution en fonction des volumes théoriquement disponibles définis hors période de basses eaux.

Dans la Figure 11Figure 10, le déficit de VP s'élève à 800 000 m3 pour la sous-période juillet-octobre. Les volumes théoriquement disponibles hors période de basses eaux (novembre-mars) qui s'élèvent à 758 746 m3 sont intégralement pris en compte dans le VP pour essayer de satisfaire au mieux les prélèvements de référence actuel. Malgré l'intégration de ces volumes de substitution, il y a toujours un déficit de 39 638 m3 pour la sous-période juillet-octobre.

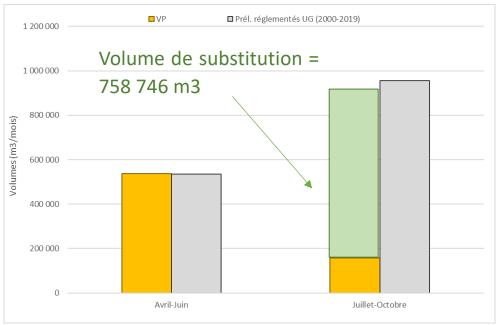


Figure 11 : Présentation de l'application du scénario « Agrégation temporelle maximisée avec stockage » — Exemple de la Veude (UG 30)

4.3.1.3.2 Scénario « Agrégation temporelle seuillée avec stockage»

Le scénario « Agrégation temporelle seuillée avec stockage » reprend les résultats du scénario « Agrégation temporelle seuillée » et propose de combler le déficit de volume sur la période juillet-août par le recours à des volumes de substitution en fonction des volumes théoriquement disponibles définis hors période de basses eaux.

Dans la Figure 12Figure 10, le déficit de VP s'élève à 920 000 m3 pour la sous-période juillet-octobre. Les volumes théoriquement disponibles hors période de basses eaux (novembre-mars) qui s'élèvent à 758 746 m3 sont intégralement pris en compte dans le VP pour essayer de satisfaire au mieux les prélèvements actuels de référence. Malgré l'intégration de ces volumes de substitution, il y a toujours un déficit d'environ 168 000 m3 pour la sous-période juillet-octobre.

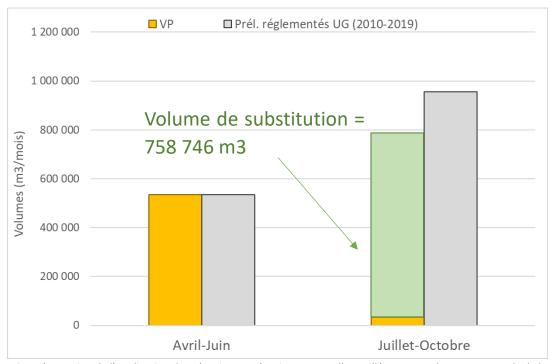


Figure 12 : Présentation de l'application du scénario « Agrégation temporelle seuillée avec stockage » – Exemple de la Veude (UG 30)

4.3.2 Méthodologie de l'analyse multicritère de l'impact d'un scénario de gestion structurelle

Les scénarios de gestion définis dans la section précédente permettent une analyse concrète des impacts des valeurs de gestion structurelle (DOE et VP) sur l'hydrologie, les milieux et les usages actuels.

Une analyse multicritère intégrant l'ensemble des éléments techniques, contextuels, environnementaux, sociaux et économiques est menée en parallèle pour éclairer les membres des CLE des deux SAGE concernés et les aider à choisir un scénario de gestion structurelle. Cette analyse multicritère n'était pas prévue initialement au cahier des charges de l'étude HMUC Vienne – Vienne Tourangelle mais suite à des demandes formulées lors des CLE de validation de la phase 1 de l'étude, il a été acté de faire évoluer la méthodologie de phase 2 afin d'intégrer la conduite de cette analyse multicritère.

L'objectif de l'analyse multicritère est de croiser les éléments techniques produits en phase 1 avec d'autres indicateurs permettant d'apprécier les impacts sociaux, économiques et environnementaux des différents scénarios de gestion présentés en Section 4.3.1 afin d'éclairer les membres des CLE et les aider à se positionner. Afin de maîtriser les délais de réalisation, les données mobilisées dans la phase 1 de l'étude sont privilégiées en intégrant des données complémentaires existantes et rapidement mobilisables par les structures gestionnaires. Une liste d'indicateur a ainsi pu être établie sur la base des préconisations du Guide HMUC 2024 et des échanges techniques lors des comités locaux qui se sont tenus en janvier 2025.

La liste des indicateurs mobilisés et présentés pour chaque scénario de gestion testé est la suivante :

O Hydrologie :

- Positionnement des débits objectifs par scénario et identification visuelle des DOE (DOE en rouge) positionnés en dessous de la gamme basse de débit biologique

O Milieux :

- Satisfaction des débits biologiques haut et bas, et positionnement par rapport à la borne basse du débit de bon fonctionnement
- Quantification des pertes ou gains de surface pondérée utile (SPU) des espèces cibles par rapport aux gammes hautes et basses des débits biologiques en fonction du positionnement des DOE (le DOE du mois le plus bas est retenu pour cet indicateur)

Usages:

- Quantification des volumes manquants en comparaison des volumes autorisés actuels et antérieurement prélevés globalement par usage (moyenne AEP et industries et P90 pour l'irrigation)
- Indicateur référence au Plan Eau (évolution des prélèvements annuels en fonction des VP déterminés)
- Indice de performance des réseaux d'eau potable (Cf. Rapport Bilan des usages Phase 1)
- Nombre d'exploitations irrigantes et part (%) par rapport au nombre total d'exploitations agricoles
- Nombre d'emplois dans les exploitations irrigantes et part (%) par rapport au nombre total d'emplois agricoles
- Part (%) de surfaces irriguées par rapport à la surface agricole utile (SAU) totale

- Type de culture irriguée et part surfacique relative de chacune de ces cultures dans l'irrigation totale
- Quantification des marges brutes par culture irriguée-non irriguée et des pertes engendrées par des diminutions de volumes prélevables
- Quantification des emplois en équivalent temps plein en fonction des exploitations irriguées ou non irriguées
- Volumes théoriquement disponibles hors période de basses eaux
- Volumes utilisés pour la substitution et coûts liés au stockage en retenue de substitution
- Volumes disponibles pour l'irrigation
- Nombre d'année où les VP dédiés à l'irrigation (Juillet-Octobre) sont supérieurs aux prélèvements passés (période 2000-2019)
- Gain potentiel sur les pertes par surévaporation des plans d'eau connectés

Certains indicateurs dans la catégorie des usages nécessitent des précisions afin de comprendre comment ils ont été déterminés :

Indicateur Plan Eau:

L'indicateur Plan Eau est indiqué afin de représenter la baisse globale des prélèvements actuels sur l'UG en fonction du scénario testé. Il permet de comparer les VP déterminés dans le scénario avec les prélèvements réglementés annuels actuels sur la base des moyennes 2010-2019 pour l'eau potable et du percentile 90 2010-2019 pour l'irrigation.

Indicateur Plan Eau annuel (%) =
$$\frac{Volumes\ manquants\ tous\ usages\ (m3)}{Total\ annuel\ prélèvements\ Réglementés\ (m3)}$$

Indice de performance des réseaux d'eau potable :

L'indice de performance des réseaux d'eau potable est calculé en moyenne sur le territoire global de l'UG en étant pondéré par la population desservie par commune.

<u>Indicateurs socio-économiques agricoles :</u>

Ces indicateurs ont été mis à disposition par la DRAAF et les services statistiques des régions Nouvelle-Aquitaine et Centre-Val-de-Loire. Ils ont été extraits du recensement agricole de 2020. Des précautions d'usages s'imposent concernant ces données et leur prise en compte dans les UG concernées :

- ▶ sont considérées comme communes appartenant à l'UG les communes dont plus de 40% du territoire est dans le bassin versant de la Vienne et plus de 50% du territoire est dans l'UG
- sont considérées comme exploitations faisant partie de la commune les exploitations dont le siège est sur la commune
- ▶ Des regroupements d'UG ont été réalisés pour diminuer le secret statistique des indicateurs mais certaines données restent limitées

Les coûts liés à la construction d'une retenue de stockage ont été évalués à 15€ par m3 stocké (source Chambre d'agriculture de la Vienne / ADIV)

Les valeurs de marge brutes sont extraites du document « Références économiques 2022 des entreprises agricoles du Grand Ouest » (pages 120 et 121). Le calcul est effectué avec des marges brutes différentes en fonction des catégories de cultures disponibles et des possibilités d'irrigation.

Cet indicateur reste renseigné uniquement pour les catégories de cultures maïs et tournesol car les marges brutes des autres catégories de culture restent inconnues. Il n'est pas possible de différencier le maïs semence du maïs grain dans le RGA et certaines marges brutes ne sont pas connues.

Lorsque le maïs ne peut pas être irrigué à 100% (VP < prélèvements actuels) alors la proportion non irriguée est comptabilisée avec une marge brute correspondante à cette même catégorie de culture mais non irriguée. Lorsque le tournesol ne peut pas être irriguée à 100% (VP < prélèvements actuels) alors la proportion non irriguée est comptabilisée avec une marge brute à 0. Le nombre d'exploitation touchée par les pertes de marge est précisé en fonction de la catégorie de culture maïs ou tournesol.

Gain potentiel sur les pertes par surévaporation des plans d'eau connectés :

Les superficies de plans d'eau connectés ont été déterminées en phase 1 dans le rapport du Bilan des usages. Pour rappel, les pertes par surévaporation d'un plan d'eau connecté ont une influence directe sur le cours d'eau au moment où la perte par surévaporation se produit soit en grande partie pendant la période de basses eaux et notamment au cours des mois de juillet et août. Cet indicateur permet de chiffrer les gains de volumes potentiels en étiage si des travaux étaient mis en place pour déconnecter des plans d'eau actuellement connectés. Un plan d'eau déconnecté se remplira en hiver et l'impact des pertes par surévaporation n'aura aucune incidence sur les débits lors de la période de basses eaux.

Ces gains de volumes pourront être redistribués aux prélèvements réglementés mais sont conditionnés à la réalisation de futures déconnexions.

4.4 Scénarios de gestion structurelle pour les UG en déficit quantitatif et résultats des analyses multicritères

L'ensemble des résultats des différents scénarios testés et des analyses multicritères menées sont présentés en détails dans le rapport de phase 2 et n'apparaissent pas temporairement dans la synthèse pédagogique. Ces scénarios feront l'objet d'une présentation détaillée lors des futures Commissions locales de l'eau des SAGE Vienne et Vienne Tourangelle pour la validation de la phase 2 de l'étude HMUC. Les CLE devront alors sélectionner un scénario à retenir pour l'application de la gestion structurelle pour ces neuf UG en déficit quantitatif. Suite à cette validation, les résultats définitifs des scénarios retenus seront présentés synthétiquement dans cette synthèse.

5 Proposition de répartition du volume prélevable entre les usages

La répartition des volumes prélevables par usages réglementés (AEP, Irrigation et Industrie) est un des objectifs majeurs de la phase 2 de l'étude HMUC Vienne - Vienne Tourangelle. Pour rappel, les volumes prélevables définis dans l'étude HMUC ont pour vocation d'être applicables en 2027, en cohérence avec l'atteinte de bon état des eaux visée par le SDAGE Loire Bretagne et avec la révision du SAGE Vienne et la mise en œuvre prévisionnelle du SAGE Vienne Tourangelle (prévue en 2027).

Comme cela a été expliqué dans la section 4.4, l'ensemble des résultats des différents scénarios testés et des analyses multicritères menées sont présentés en détails dans le rapport de phase 2 et n'apparaissent pas actuellement dans la synthèse pédagogique. Ces scénarios feront l'objet d'une présentation détaillée lors des futures Commissions locales de l'eau des SAGE Vienne et Vienne Tourangelle pour la validation de la phase 2 de l'étude HMUC. Les CLE devront alors sélectionner un scénario à retenir pour l'application de la gestion structurelle pour ces neuf UG en déficit quantitatif. En attendant que ce choix soit finalisé, la synthèse pédagogique provisoire présente la répartition des VP est effectué pour chaque scénario envisageable pour les UG en déficit quantitatif. La synthèse sera mise à jour lorsque les scénarios de gestion seront définitivement sélectionnés.

5.1.1 UG 1 – Vienne amont

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
Prélèvements	AEP	36 317	38 660	41 003	45 689	45 689	41 003	38 660	287 022
actuels (m3)	Irrigation (P90)	0	0	0	0	0	0	0	0
,	Industrie	20	20	20	20	20	20	20	140
	AEP	36 317 (0%)	38 660 (0%)	41 003 (0%)	45 689 (0%)	45 689 (0%)	41 003 (0%)	38 660 (0%)	287 022 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	20	20	20	20	20	20	20	140
		(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volumes comple	émentaires	22 169	87 539	41 920	73 233	65 098	56 531	17 251	363 740

Tableau 12 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 1 – Vienne amont

Volume en	Volume en m3				
2.00	AEP	181 585			
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0			
(2010-2019)	Industrie	105			
Volumes disponibles hors basses eaux (m3)	Total	17 063 552			
	AEP	181 585 (0%)			
Volumes prélevables hors basses eaux	Irrigation	0 (0%)			
basses edux	105 (0%)				
Volumes complér	16 881 862				

Tableau 13 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 1 – Vienne amont

5.1.2 UG 2 – Combade

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	18 115	19 283	20 452	22 790	22 790	20 452	19 283	143 165
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	1 984	1 984	1 984	1 984	1 984	1 984	1 984	13 891
	AEP	18 115 (0%)	19283 (0%)	20 452 (0%)	22 790 (0%)	22 790 (0%)	20 452 (0%)	19 283 (0%)	143 165 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	1 984 (0%)	1 984 (0%)	1 984 (0%)	1 984 (0%)	1 984 (0%)	1 984 (0%)	1 984 (0%)	13 891 (0%)
Volumes comple	émentaires	28 130	46 523	30 923	20 627	8 954	25 165	29 848	190 169

Tableau 14 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 2 – Combade

Volume en	Volume en m3				
- (1)	AEP	90 575			
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0			
(2010-2019)	Industrie	9 920			
Volumes disponibles hors basses eaux (m3)	Total	4 084 778			
	AEP	90 575 (0%)			
Volumes prélevables hors basses eaux	Irrigation	0 (0%)			
Dasses eaux	9 920 (0%)				
Volumes complér	3 983 778				

Tableau 15 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 2 – Combade

5.1.3 UG 3 – Maulde

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	32 339	34 425	36 512	40 684	40 684	36 512	34 425	255 581
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	196	1 038	2 540	7 067	5 402	1 471	0	17 714
(2010-2013)	Industrie	2	2	2	2	2	2	2	16
	AEP	32 339 (0%)	34 425 (0%)	36 512 (0%)	40 684 (0%)	40 684 (0%)	36 512 (0%)	34 425 (0%)	255 581 (0%)
VP (m3)	Irrigation	196 (0%)	1 038 (0%)	2 540 (0%)	7 067 (0%)	5 402 (0%)	1 471 (0%)	0	17 714 (0%)
	Industrie	2 (0%)	2 (0%)	2 (0%)	2 (0%)	2 (0%)	2 (0%)	2 (0%)	16 (0%)
Volumes comple	émentaires	67 498	607 085	365 174	532 432	504 604	244 847	78 261	2 399 902

Tableau 16 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 3 – Maulde

Volume en	m3	Novembre – Mars
5 (1)	AEP	161 695
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	10
Volumes disponibles hors basses eaux (m3)	Total	7 546 995
	AEP	161 695 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	0 (0%)	
Volumes complér	7 385 300	

Tableau 17 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 3 – Maulde

5.1.4 UG 4 – Taurion amont

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	48 758	48 834	53 351	57 616	58 849	51 295	51 630	370 333
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	144	516	1 956	1 753	1 291	520	0	6 180
(2010-2013)	Industrie	30	30	30	30	30	30	30	208
	AEP	48 758 (0%)	48 834 (0%)	53 351 (0%)	57 616 (0%)	58 849 (0%)	51 295 (0%)	51 630 (0%)	370 333 (0%)
VP (m3)	Irrigation	144 (0%)	516 (0%)	1 956 (0%)	1 753 (0%)	1 291 (0%)	520 (0%)	0	6 180 (0%)
	Industrie	30 (0%)	30 (0%)	30 (0%)	30 (0%)	30 (0%)	30 (0%)	30 (0%)	208 (0%)
Volumes compl	émentaires	11 659	278 136	186 922	263 795	230 184	148 400	376 969	1 496 066

Tableau 18 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 4 – Taurion amont

Volume en	Volume en m3					
5 (1)	AEP	237 126				
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0				
(2010-2019)	Industrie	150				
Volumes disponibles hors basses eaux (m3)	Total	7 858 435				
	AEP	237 126 (0%)				
Volumes prelevables hors basses eaux	lumes prélevables hors Irrigation					
basses eaux	0 (0%)					
Volumes complér	7 621 159					

Tableau 19 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 4 – Taurion amont

5.1.5 UG 5 – Vige

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	14 019	14 924	15 828	17 637	17 637	15 828	14 924	110 798
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	14 019 (0%)	14 924 (0%)	15 828 (0%)	17 637 (0%)	17 637 (0%)	15 828 (0%)	14 924 (0%)	110 798 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	8 501	30 802	5 312	11 227	7 911	3 054	7 102	73 910

Tableau 20 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 5 – Vige

Volume en	m3	Novembre – Mars
2 (1)	AEP	70 095
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	3 421 316
	AEP	70 095 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	3 351 221	

Tableau 21 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 5 – Vige

5.1.6 UG 6 – Taurion aval

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
- 00	AEP	62 627	66 985	72 254	83 383	85 955	87 688	76 149	535 040
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	62 627 (0%)	66 985 (0%)	72 254 (0%)	83 383 (0%)	85 955 (0%)	87 688 (0%)	76 149 (0%)	535 040 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	11 031	5 063	2 928	5 268	113 424	7 864	21 352	45 642

Tableau 22 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 6 – Taurion aval

Volume en	Volume en m3					
- (1)	AEP	325 941				
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0				
(2010-2019)	Industrie	0				
Volumes disponibles hors basses eaux (m3)	Total	28 467 382				
	AEP	325 941 (0%)				
Volumes prélevables hors basses eaux	Irrigation	0 (0%)				
Industrie		0 (0%)				
Volumes complér	Volumes complémentaires					

Tableau 23 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 6 – Taurion aval

5.1.7 UG 7 – Vienne entre la Maulde et l'Aixette

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	385 048	387 389	430 169	409 091	452 460	383 050	400 292	2 847 499
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	220	286	13 125	19 640	14 672	1 379	1 044	50 366
(2010-2013)	Industrie	50 456	50 456	50 456	50 456	50 456	50 456	50 456	353 191
	AEP	385 048 (0%)	387 389 (0%)	430 169 (0%)	409 091 (0%)	452 460 (0%)	383 050 (0%)	400 292 (0%)	2 847 499 (0%)
VP (m3)	Irrigation	220 (0%)	286 (0%)	13 125 (0%)	19 640 (0%)	14 672 (0%)	1 379 (0%)	1 044 (0%)	50 366 (0%)
	Industrie	50 456 (0%)	353 191 (0%)						
Volumes comple	émentaires	60 147	130 766	88 265	20 228	32 133	21 821	11 504	364 865

Tableau 24 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 7 – Vienne entre la Maulde et l'Aixette

Volume en m	13	Novembre – Mars
	AEP	2 408 773
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	17 604
(2010-2019)	Industrie	252 280
Volumes disponibles hors basses eaux (m3)	Total	84 161 854
	AEP	2 408 773 (0%)
Volumes prélevables hors basses eaux	Irrigation	17 604 (0%)
basses eduk	Industrie	252 280 (0%)
Volumes compléme	81 483 197	

Tableau 25 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 7 – Vienne entre la Maulde et l'Aixette

5.1.8 UG 8 – Ruisseau du Palais

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	380 624	4 713	4 998	5 569	5 569	4 998	4 713	411 184
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	2 888	2 888	2 888	2 888	2 888	2 888	2 888	20 214
	AEP	380 624 (0%)	4 713 (0%)	4 998 (0%)	5 569 (0%)	5 569 (0%)	4 998 (0%)	4 713 (0%)	411 184 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	2 888 (0%)	2 888 (0%)	2 888 (0%)	2 888 (0%)	2 888 (0%)	2 888 (0%)	2 888 (0%)	20 214 (0%)
Volumes compl	émentaires	158 244	128 757	86 650	127 903	90 488	98 666	134 601	825 309

Tableau 26 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 8 – Ruisseau du Palais

Volume en	m3	Novembre – Mars
200	AEP	2 408 773
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	17 604
(2010-2019)	Industrie	252 280
Volumes disponibles hors basses eaux (m3)	Total	942 272
	AEP	2 408 773 (0%)
Volumes prélevables hors basses eaux	Irrigation	17 604 (0%)
basses edux	252 280 (0%)	
Volumes complér	0	

Tableau 27 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux — UG 8 — Ruisseau du Palais

5.1.9 UG 9 – Briance

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	172 945	185 270	196 384	202 364	203 329	191 381	189 737	1 341 410
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	1 727	2 660	8 915	14 554	8 144	515	2 541	39 056
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	172 945 (0%)	185 270 (0%)	196 384 (0%)	202 364 (0%)	203 329 (0%)	191 381 (0%)	189 737 (0%)	1 341 410 (0%)
VP (m3)	Irrigation	1 727 (0%)	2 660 (0%)	8 915 (0%)	14 554 (0%)	8 144 (0%)	515 (0%)	2 541 (0%)	39 056 (0%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	98 758	279 614	156 236	130 985	58 070	106 995	142 428	973 086

Tableau 28 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 9 – Briance

Volume en	m3	Novembre – Mars
- (1)	AEP	930 995
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	60 062
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	7 864 715
	AEP	930 995 (0%)
Volumes prélevables hors basses eaux	Irrigation	60 062 (0%)
basses eaux	0 (0%)	
Volumes complér	6 873 658	

Tableau 29 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 9 – Briance

5.1.10 UG 10 – Aurence

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	31 147	32 227	35 286	38 301	36 915	33 394	31 843	239 112
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	201	224	940	1 400	653	42	2 223	5 683
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	31 147 (0%)	32 227 (0%)	35 286 (0%)	38 301 (0%)	36 915 (0%)	33 394 (0%)	31 843 (0%)	239 112 (0%)
VP (m3)	Irrigation	201 (0%)	224 (0%)	940 (0%)	1 400 (0%)	653 (0%)	42 (0%)	2 223 (0%)	5 683 (0%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	196 651	20 226	59 149	13 641	19 436	42 764	214 827	566 694

Tableau 30 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 10 – Aurence

Volume en	Volume en m3					
5.40	AEP	156 752				
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	49 644				
(2010-2013)	Industrie	0				
Volumes disponibles hors basses eaux (m3)	Total	1 279 625				
	AEP	156 752 (0%)				
Volumes prélevables hors basses eaux	Irrigation	49 644 (0%)				
basses eaux	Industrie	0 (0%)				
Volumes complér	1 073 229					

Tableau 31 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 10 – Aurence

5.1.11 UG 11 – Aixette

5.1.11.1 Scénario diagnostic

Volume en m3		Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
- //>	AEP	9 785	10 416	11 048	12 310	12 310	11 048	10 416	77 334
Prélèvements actuels (m3)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	9 785 (0%)	10 416 (0%)	11 048 (0%)	12 310 (0%)	12 310 (0%)	0 (-100%)	10 416 (0%)	55 680 (-28%)
	Irrigation	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Industrie	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Volumes comple	émentaires	20 897	130 160	41 974	47 372	1 486	0	5 302	247 191

Tableau 32 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 11 – Aixette

Volume en m3	Novembre – Mars	
- // / -	AEP	48 925
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2013)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	2 574 391
	AEP	48 925 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
Caux	Industrie	0 (0%)
Volumes complément	2 525 466	

Tableau 33 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 11 – Aixette

5.1.11.2 Scénario « Dérogation mensuelle »

Volume e	Volume en m3		Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
	AEP	9 785	10 416	11 048	12 310	12 310	11 048	10 416	77 334
Prélèvements actuels (m3)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	9 785 (0%)	10 416 (0%)	11 048 (0%)	12 310 (0%)	12 310 (0%)	11 048 (0%)	10 416 (0%)	77 334 (0%)
VP (m3)	Irrigation	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Industrie	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Volumes complémentaires		20 897	130 160	41 974	47 372	1 486	0	5 302	247 191

Tableau 34 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 11 – Aixette

Volume en m3	Novembre – Mars	
- (1)	AEP	48 925
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2013)	Industrie	0
Volumes disponibles hors basses eaux (m3)	2 574 391	
	AEP	48 925 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
Caux	Industrie	0 (0%)
Volumes complément	2 525 466	

Tableau 35 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 11 – Aixette

5.1.12 UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles

Volume e	Volume en m3		Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	16 624	16 826	18 168	19 767	20 070	18 504	18 069	128 029
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	7 546	15 829	37 348	81 773	74 111	6 494	9 192	232 293
(2010-2019)	Industrie	2 486 602	2 497 402	2 486 602	2 497 402	2 497 402	2 486 602	2 497 402	17 449 414
	AEP	16 624 (0%)	16 826 (0%)	18 168 (0%)	19 767 (0%)	20 070 (0%)	18 504 (0%)	18 069 (0%)	128 029 (0%)
VP (m3)	Irrigation	7 546 (0%)	15 829 (0%)	37 348 (0%)	81 773 (0%)	74 111 (0%)	6 494 (0%)	9 192 (0%)	232 293 (0%)
	Industrie	2 486 602 (0%)	2 497 402 (0%)	2 486 602 (0%)	2 497 402 (0%)	2 497 402 (0%)	2 486 602 (0%)	249 7402 (0%)	17 449 414 (0%)
Volum compléme		29 881	30 756	3 340	10 660	81 024	98 707	3 630	257 997

Tableau 36 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles

Volume en ma	Novembre – Mars	
	AEP	79 491
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	221 473
(2010-2019)	Industrie	12 443 810
Volumes disponibles hors basses eaux (m3)	Total	104 859 473
	AEP	79 491 (0%)
Volumes prélevables hors basses eaux	Irrigation	221 473 (0%)
basses edux	Industrie	12 443 810 (0%)
Volumes compléme	92 114 699	

Tableau 37 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 12 – Vienne de la Confluence avec l'Aurence jusqu'à Availles

5.1.13 UG 13 – Glane

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
Prélèvements actuels (m3) (2010-2019)	AEP	29 712	31 629	33 545	37 379	37 379	33 545	31 629	234 818
	Irrigation (P90)	2 336	2 961	12 332	22 079	14 948	903	1 907	57 466
	Industrie	49	49	49	49	49	49	49	344
	AEP	29 712 (0%)	31 629 (0%)	33 545 (0%)	37 379 (0%)	37 379 (0%)	33 545 (0%)	31 629 (0%)	234 818 (0%)
VP (m3)	Irrigation	2 336 (0%)	2 961 (0%)	12 332 (0%)	22 079 (0%)	14 948 (0%)	903 (0%)	1 907 (0%)	57 466 (0%)
	Industrie	49 (0%)	49 (0%)	49 (0%)	49 (0%)	49 (0%)	49 (0%)	49 (0%)	344 (0%)
Volumes comple	émentaires	137 242	452 350	244 036	280 473	133 885	116 579	297 422	1 661 988

Tableau 38 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 13 – Glane

Volume en	Novembre – Mars	
	AEP	148 560
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	54 639
(2010-2019)	Industrie	245
Volumes disponibles hors basses eaux (m3)	Total	5 788 090
	AEP	148 560 (0%)
Volumes prélevables hors basses eaux	Irrigation	54 639 (0%)
basses edux	Industrie	245 (0%)
Volumes complér	5 584 646	

Tableau 39 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 13 – Glane

5.1.14 UG 14 – Gorre

Volume en m3		Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	3 810	3 858	4 236	4 625	4 725	4 147	3 937	29 338
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	2 126	2 775	10 630	18 810	11 982	762	0	47 085
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	3 810 (0%)	3 858 (0%)	4 236 (0%)	4 625 (0%)	4 725 (0%)	4 147 (0%)	3 937 (0%)	29 338 (0%)
VP (m3)	Irrigation	2 126 (0%)	2 775 (0%)	10 630 (0%)	18 810 (0%)	11 982 (0%)	762 (0%)	0	47 085 (0%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	36 059	240 951	111 452	136 861	17 796	96 868	273 407	543 119

Tableau 40 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 14 – Gorre

Volume en	m3	Novembre – Mars		
- (1)	AEP	18 309		
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0		
(2010-2019)	Industrie	0		
Volumes disponibles hors basses eaux (m3)	Lotal			
	AEP	18 309 (0%)		
Volumes prélevables hors basses eaux	Irrigation	0 (0%)		
basses eaux	Industrie	0 (0%)		
Volumes complér	2 564 007			

Tableau 41 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 14 – Gorre

5.1.15 UG 15 – Graine

5.1.15.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
5 (1)	AEP	2 490	2 329	2 587	3 331	3 493	3 363	2 814	20 407
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	1 804	3 397	9 068	18 727	10 985	632	0	44 613
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	2 490	2 329	2 587	3 331	3 493	0	2 814	17 044
	AEP	(0%)	(0%)	(0%)	(0%)	(0%)	(-100%)	(0%)	(-16%)
\/D (m-2\	luviantina	1 804	3 397	9 068	18 727	10 985	0	0	43 981
VP (m3)	Irrigation	(0%)	(0%)	(0%)	(0%)	(0%)	(-100%)	(0%)	(-1%)
	Industria	0	0	0	0	0	0	0	0
	Industrie	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volumes complé	émentaires	57 229	110 614	65 722	68 034	1 260	0	24 086	326 946

Tableau 42 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 15 – Graine

Volume en m3		Novembre – Mars
5 (1)	AEP	11 935
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	1 445 989
	AEP	11 935 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
eaux	Industrie	0 (0%)
Volumes complément	aires	1 434 054

Tableau 43 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 15 – Graine

5.1.15.2 Scénario « Dérogation mensuelle »

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
	AEP	2 490	2 329	2 587	3 331	3 493	3 363	2 814	20 407
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	1 804	3 397	9 068	18 727	10 985	632	0	44 613
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	2 490	2 329	2 587	3 331	3 493	3 363	2 814	20 407
	ALP	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
\/D (m-2)	luuiaatiaa	1 804	3 397	9 068	18 727	10 985	632	0	44 613
VP (m3)	Irrigation	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	Industria	0	0	0	0	0	0	0	0
	Industrie	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volum complémei		57 229	110 614	65 722	68 034	1 260	0	24 086	326 946

Tableau 44 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 15 – Graine

Volume en m3	Novembre – Mars	
	AEP	11 935
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	1 445 989
	AEP	11 935 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
eaux	Industrie	0 (0%)
Volumes complément	aires	1 434 054

Tableau 45 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 15 – Graine

5.1.16 UG 16 – Goire

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	983	1 046	1 110	1 236	1 236	1 110	1 046	7 767
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	983 (0%)	1 046 (0%)	1 110 (0%)	1 236 (0%)	1 236 (0%)	1 110 (0%)	1 046 (0%)	7 767 (0%)
VP (m3)	Irrigation	0	0	0	0	0	0	0	0
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	53 973	310 583	220 482	81 019	105 876	60 347	91 501	923 780

Tableau 46 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 16 – Goire

Volume en	m3	Novembre – Mars
- (1)	AEP	4 915
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	1 776 390
	AEP	4 915 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses edux	Industrie	0 (0%)
Volumes complér	1 771 475	

Tableau 47 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 16 – Goire

5.1.17 UG 17 – Issoire

5.1.17.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
- (1)	AEP	108 092	115 066	122 040	135 987	135 987	122 040	115 066	854 277
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2019)	Industrie	1 954	1 954	1 954	1 954	1 954	1 954	1 954	13 680
	AEP	108 092	115 066	122 040	135 987	65 674	122 040	115 066	783 964
	AEP	(0%)	(0%)	(0%)	(0%)	(-52%)	(0%)	(0%)	(-8%)
\/D /m2\	luviaation	0	0	0	0	0	0	0	0
VP (m3)	Irrigation	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	Industria	1 954	1 954	1 954	1 954	0	1 954	1 954	11 726
	Industrie	(0%)	(0%)	(0%)	(0%)	(-100%)	(0%)	(0%)	(-14%)
Volumes comple	émentaires	41 273	427 621	192 582	140 686	0	1 071	291 599	1 094 832

Tableau 48 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 17 – Issoire

Volume en n	13	Novembre – Mars
	AEP	540 460
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	8 168
	Industrie	9 770
Volumes disponibles hors basses eaux (m3)	Total	3 159 701
	AEP	540 460 (0%)
Volumes prélevables hors basses eaux	Irrigation	8 168 (0%)
basses eaux	Industrie	9 770 (0%)
Volumes complém	2 601 303	

Tableau 49 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 17 – Issoire

5.1.17.2 Scénario « Dérogation mensuelle »

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
- (1)	AEP	108 092	115 066	122 040	135 987	135 987	122 040	115 066	854 277
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2013)	Industrie	1 954	1 954	1 954	1 954	1 954	1 954	1 954	13 680
	AEP	108 092 (0%)	115 066 (0%)	122 040 (0%)	135 987 (0%)	135 987 (0%)	122 040 (0%)	115 066 (0%)	854 277 (0%)
VP (m3)	Irrigation	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Industrie	1 954 (0%)	1 954 (0%)	1 954 (0%)	1 954 (0%)	1 954 (0%)	1 954 (0%)	1 954 (0%)	13 680 (0%)
Volumes comple	émentaires	41 273	427 621	192 582	140 686	0	1 071	291 733	1 094 832

Tableau 50 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 17 – Issoire

Volume en n	13	Novembre – Mars
	AEP	540 460
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	8 168
	Industrie	9 770
Volumes disponibles hors basses eaux (m3)	Total	3 159 701
	AEP	540 460 (0%)
Volumes prélevables hors basses eaux	Irrigation	8 168 (0%)
basses eaux	Industrie	9 770 (0%)
Volumes complém	2 601 303	

Tableau 51 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 17 – Issoire

5.1.18 UG 18 – Vienne entre l'Issoire et la Grande Blourde

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	63 517	67 615	71 713	79 909	79 909	71 713	67 615	501 992
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	152 394	188 191	261 398	389 394	402 970	294 953	234 220	1 923 520
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	63 517 (0%)	67 615 (0%)	71 713 (0%)	79 909 (0%)	79 909 (0%)	71 713 (0%)	67 615 (0%)	501 992 (0%)
VP (m3)	Irrigation	152 394 (0%)	188 191 (0%)	261 398 (0%)	389 394 (0%)	402 970 (0%)	294 953 (0%)	234 220 (0%)	1 923 520 (0%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	17 346	2 964	48 123	16 280	18 050	5 861	13 117	121 741

Tableau 52 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 18 – Vienne entre l'Issoire et la Grande Blourde

Volume en	Volume en m3			
Prélèvements actuels (m3) (2010-2019)	AEP	317 585		
	Irrigation (P90)	637 025		
	Industrie	0		
Volumes disponibles hors basses eaux (m3)	Total	107 815 020		
	AEP	317 585 (0%)		
Volumes prélevables hors basses eaux	Irrigation	637 025 (0%)		
basses eaux	Industrie	0 (0%)		
Volumes complér	106 860 410			

Tableau 53 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 18 – Vienne entre l'Issoire et la Grande Blourde

5.1.19 UG 19 – Grande Blourde

5.1.19.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
	AEP	2 590	2 757	2 924	3 258	3 258	2 924	2 757	20 470
Prélèvements actuels (m3)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2019)	Industrie	730	730	730	730	730	730	730	5 109
	AEP	2 590 (0%)	2 757 (0%)	2 924 (0%)	0 (-100%)	0 (-100%)	0 (-100%)	2 757 (0%)	11 029 (-46%)
VP (m3)	Irrigation	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	Industrie	730 (0%)	730 (0%)	730 (0%)	0 (-100%)	0 (-100%)	0 (-100%)	730 (0%)	2 919 (-43%)
Volum compléme		33 637	98 391	87 096	0	0	0	0	219 124

Tableau 54 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 19 – Grande Blourde

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	12 950
	Irrigation (P90)	473 619
	Industrie	3 650
Volumes disponibles hors basses eaux (m3)	Total	2 354 983
	AEP	12 950 (0%)
Volumes prélevables hors basses eaux	Irrigation	473 619 (0%)
eaux	Industrie	3 650 (0%)
Volumes complén	1 864 764	

Tableau 55 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 19 – Grande Blourde

5.1.19.2 Scénario « Dérogation mensuelle »

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
	AEP	2 590	2 757	2 924	3 258	3 258	2 924	2 757	20 470
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0	0	0	0	0	0	0	0
(2010-2019)	Industrie	730	730	730	730	730	730	730	5 109
	AEP	2 590	2 757	2 924	3 258	3 258	2 924	2 757	20 470
	AEP	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
\/D (2\	luviantina	0	0	0	0	0	0	0	0
VP (m3)	Irrigation	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
	Industria	730	730	730	730	730	730	730	5109
	Industrie	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volumes comple	émentaires	33 637	98 391	87 096	0	0	0	0	219 124

Tableau 56 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 19 – Grande Blourde

Volume en m3	Novembre – Mars	
	AEP	12 950
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	473 619
(2010-2013)	Industrie	3 650
Volumes disponibles hors basses eaux (m3)	Total	2 354 983
	AEP	12 950 (0%)
Volumes prélevables hors basses eaux	Irrigation	473 619 (0%)
	Industrie	3 650 (0%)
Volumes complément	1 864 764	

Tableau 57 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux — UG 19 — Grande Blourde

5.1.20 UG 20 – Petite Blourde

5.1.20.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
	AEP	0	0	0	0	0	0	0	0
Prélèvements actuels (m3)	Irrigation (P90)	6 958	7 271	10 424	15 312	13 274	19 969	12 442	85 650
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	ΛED	0	0	0	0	0	0	0	0
	AEP	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
VP (m3)	Irrigation	6 958	7 271	10 424	15 312	0	0	12 442	52 407
VP (IIIS)	irrigation	(0%)	(0%)	(0%)	(0%)	(-100%)	(-100%)	(0%)	(-39%)
	Industrie	0	0	0	0	0	0	0	0
	industrie	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volum compléme		35 117	47 440	43 112	12 394	0	0	8 782	146 845

Tableau 58 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 20 – Petite Blourde

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	0
	Irrigation (P90)	502 944
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	803 516
	AEP	0 (0%)
Volumes prélevés hors basses eaux	Irrigation	502 944 (0%)
	Industrie	0 (0%)
Volumes complémen	300 572	

Tableau 59 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 20 – Petite Blourde

5.1.20.2 Scénario « Agrégation temporelle seuillée »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	0	0
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	24 653	60 997
	Industrie	0	0
	AEP	0	0
VP en basses eaux (m3)	Irrigation	24 653 (0%)	27 754 (-54%)
	Industrie	0	0
Volumes compléme	0	0	

Tableau 60 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 20 – Petite Blourde

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	0
	Irrigation (P90)	502 944
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	803 516
	AEP	0 (0%)
Volumes prélevés hors basses eaux	Irrigation	502 944 (0%)
	Industrie	0 (0%)
Volumes complémen	300 572	

Tableau 61 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 20 – Petite Blourde

5.1.20.3 Scénario « Agrégation temporelle seuillée et stockage»

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	0	0
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	24 653	60 997
	Industrie	0	0
	AEP	0	0
VP en basses eaux (m3)	Irrigation	24 653 (0%)	27 754 (-54%)
	Industrie	0	0
Volumes compléme	0	0	

Tableau 62 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 20 – Petite Blourde

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	0
	Irrigation (P90)	502 944
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	803 516
	AEP	0 (0%)
Volumes prélevés hors basses eaux	Irrigation	536 187 (+6%)
	Industrie	0 (0%)
Volumes complémen	267 329	

Tableau 63 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 20 – Petite Blourde

5.1.20.4 Scénario « Agrégation temporelle maximisée »

Volume en m	Avril - Juin	Juillet - Octobre	
5 (1)	AEP	0	0
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	24 653	60 997
(2010-2019)	Industrie	0	0
	AEP	0	0
VP en basses eaux (m3)	Irrigation	24 653 (0%)	48 930 (-20%)
	Industrie	0	0
Volumes compléme	125 669	0	

Tableau 64 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 20 – Petite Blourde

Volume en m3	Novembre – Mars	
	AEP	0
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	502 944
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	803 516
	AEP	0 (0%)
Volumes prélevés hors basses eaux	Irrigation	502 944 (0%)
	Industrie	0 (0%)
Volumes complémen	300 572	

Tableau 65 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 20 – Petite Blourde

5.1.20.5 Scénario « Agrégation temporelle maximisée et stockage »

Volume en m	Avril - Juin	Juillet - Octobre		
2 (1)	AEP	0	0	
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	24 653	60 997	
(2010-2019)	Industrie	0	0	
	AEP	0	0	
VP en basses eaux (m3)	Irrigation	24 653 (0%)	48 930 (-20%)	
	Industrie	0	0	
Volumes compléme	125 669	0		

Tableau 66 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 20 – Petite Blourde

Volume en m3	Novembre – Mars	
	AEP	0
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	502 944
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	803 516
	AEP	0 (0%)
Volumes prélevés hors basses	Irrigation	515 011 (+2%)
eaux	Industrie	0 (0%)
Volumes complémenta	288 145	

Tableau 67 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 20 – Petite Blourde

5.1.21 UG 21 – Vienne à Chauvigny

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	97 295	103 572	109 849	122 403	122 403	109 849	103 572	768 941
Prélèvements actuels (m3)	Irrigation (P90)	170 603	201 494	276 753	406 242	581 731	535 025	433 918	2 605 766
(2010-2019)	Industrie	7 555 836	7 625 268	8 122 991	8 165 227	7 678 610	7 989 867	8 763 265	55 901 063
	AEP	97 295 (0%)	103 572 (0%)	109 849 (0%)	122 403 (0%)	122 403 (0%)	109 849 (0%)	103 572 (0%)	768 941 (0%)
VP (m3)	Irrigation	170 603 (0%)	201 494 (0%)	276 753 (0%)	406 242 (0%)	581 731 (0%)	535 025 (0%)	433 918 (0%)	2 605 766 (0%)
	Industrie	7 555 836 (0%)	7 625 268 (0%)	8 122 991 (0%)	8 165 227 (0%)	7 678 610 (0%)	7 989 867 (0%)	8 763 265 (0%)	55 901 063 (0%)
Volum complémen									

Tableau 68 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 21 – Vienne à Chauvigny - (*) Volumes complémentaires temporaires dans l'attente du choix des scénarios de gestion des UG amont

Volume en	Novembre – Mars	
	AEP	486 473
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	596 290
(2010-2019)	Industrie	46 635 877
Volumes disponibles hors basses eaux (m3)	Total	112 784 988
	AEP	486 473 (0%)
Volumes prélevables hors basses eaux	Irrigation	289 989 (0%)
basses eaux	Industrie	46 635 877 (0%)
Volumes complér	65 066 347	

Tableau 69 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 21 – Vienne à Chauvigny

5.1.22 UG 22 - Dive

Comme cela est expliqué dans la Section 6.2.22, le manque de suivi hydrométrique de surface et piézométrique en nappe libre ne permet pas d'appliquer la méthodologie de phase 2 de l'étude de manière suffisamment robuste. Il n'est pas possible de s'assurer que les relations nappes rivières soient bien restituées par le modèle pluie-débit et vu la forte proportion de prélèvements effectués en nappe libre et le manque de suivi actuel, il apparaît plus cohérent de ne pas arrêter de VP à ce stade.

La Dive a déjà été équipé d'un radar de suivi hydrométrique et la courbe de tarage est actuellement en cours de calage. Des prospections sont également en cours pour équiper un puits d'un piézomètre pour le suivi de la nappe libre du Dogger. Une fois les suivis des débits et des niveaux piézométriques suffisants (au moins 5 ans de données), une analyse similaire sera menée sur la Dive afin de déterminer et arrêter des VP applicables aux prélèvements souterrains et surfaciques de manière plus robuste.

5.1.23 UG 23 – Vienne à la confluence avec le Clain

Volume e	Volume en m3		Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	46 567	49 571	52 576	58 584	58 584	52 576	49 571	368 029
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	278 107	349 592	493 241	726 205	835 065	846 988	699 342	4 228 542
(2010-2019)	Industrie	12 240	12 240	12 240	12 240	12 240	12 240	12 240	85 677
	AEP	46 567 (0%)	49 571 (0%)	52 576 (0%)	58 584 (0%)	58 584 (0%)	52 576 (0%)	49 571 (0%)	368 029 (0%)
VP (m3)	Irrigation	278 107 (0%)	349 592 (0%)	493 241 (0%)	726 205 (0%)	835 065 (0%)	846 988 (0%)	699 342 (0%)	4 228 542 (0%)
lı	Industrie	12 240 (0%)	85 677 (0%)						
Volumes complémentaires*									

Tableau 70 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 23 – Vienne à la confluence avec le Clain - (*) Volumes complémentaires temporaires dans l'attente du choix des scénarios de gestion des UG amont

Volume en	Volume en m3				
- (1)	AEP	232 835			
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	201 643			
(2010-2019)	Industrie	61 198			
Volumes disponibles hors basses eaux (m3)	Total	119 912 523			
	AEP	232 835 (0%)			
Volumes prélevables hors basses eaux	Irrigation	201 643 (0%)			
basses eaux	Industrie	61 198 (0%)			
Volumes complér	119 203 749				

Tableau 71 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 23 – Vienne à la confluence avec le Clain

5.1.24 UG 24 – Ozon

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	1 223	1 302	1 380	1 538	1 538	1 380	1 302	9 663
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	17 952	20 391	28 290	51 200	52 644	53 081	43 205	266 763
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	1 223 (0%)	1 302 (0%)	1 380 (0%)	1 538 (0%)	1 538 (0%)	1 380 (0%)	1 302 (0%)	9 663 (0%)
VP (m3)	Irrigation	17 952 (0%)	20 391 (0%)	28 290 (0%)	51 200 (0%)	52 644 (0%)	53 081 (0%)	43 205 (0%)	266 763 (0%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	45 965	28 491	57 128	29 886	10 163	7 270	29 579	208 482

Tableau 72 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 24 – Ozon

Volume en	Volume en m3				
- (1)	AEP	6 115			
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	60 830			
(2010-2019)	Industrie	0			
Volumes disponibles hors basses eaux (m3)	Total	393 549			
	AEP	6 115 (0%)			
Volumes prélevables hors basses eaux	Irrigation	60 830 (0%)			
	Industrie	0 (0%)			
Volumes complér	326 604				

Tableau 73 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 24 – Ozon

5.1.25 UG 25 – Envigne

5.1.25.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	Basses eaux
- (1)	AEP	12 476	13 281	14 085	15 695	15 695	14 085	13 281	98 598
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	9 302	18 674	22 228	29 434	32 835	23 206	19 726	155 405
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	12 476	13 281	14 085	15 695	0	0	13 281	68 817
	ALI	(0%)	(0%)	(0%)	(0%)	(-100%)	(-100%)	(0%)	(-30%)
VP (m3)	Irrigation	9 302	18 674	22 228	19 118	0	0	19 726	89 048
VP (IIIS)	iiiigatioii	(0%)	(0%)	(0%)	(-35%)	(-100%)	(-100%)	(0%)	(-43%)
	Industrie	0	0	0	0	0	0	0	0
	maustrie	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)	(0%)
Volum compléme		41 211	24 505	27 800	0	0	0	87 948	181 464

Tableau 74 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 25 – Envigne

Volume en m3	Novembre – Mars	
	AEP	62 380
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	16 146
(2010 2013)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	263 977
	AEP	62 380 (0%)
Volumes prélevés hors basses eaux	Irrigation	16 146 (0%)
eaux	Industrie	0 (0%)
Volumes complémen	185 451	

Tableau 75 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 25 – Envigne

5.1.25.2 Scénario « Agrégation temporelle seuillée »

Volume en m	Volume en m3			
	AEP	39 842	58 756	
Prélèvements actuels (m3)	Irrigation (P90)	50 204	105 201	
(2010-2019)	Industrie	0	0	
	AEP	39 842 (0%)	58 756 (0%)	
VP en basses eaux (m3)	Irrigation	50 204 (0%)	9 064 (-91%)	
	Industrie	0	0	
Volumes complém	0	0		

Tableau 76 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 25 – Envigne

Volume en m3	Novembre – Mars		
Prélèvements actuels (m3) (2010-2019)	AEP	62 380	
	Irrigation (P90)	16 146	
(2010 2015)	Industrie	0	
Volumes disponibles hors basses eaux (m3)	Total	263 977	
	AEP	62 380 (0%)	
Volumes prélevés hors basses eaux	illigation		
eaux	Industrie	0 (0%)	
Volumes complémen	185 451		

Tableau 77 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 25 – Envigne

5.1.25.3 Scénario « Agrégation temporelle seuillée et stockage»

Volume en m	Volume en m3			
	AEP	39 842	58 756	
Prélèvements actuels (m3)	Irrigation (P90)	50 204	105 201	
(2010-2019)	Industrie	0	0	
	AEP	39 842 (0%)	58 756 (0%)	
VP en basses eaux (m3)	Irrigation	50 204 (0%)	9 064 (-91%)	
	Industrie	0	0	
Volumes complém	0	0		

Tableau 78 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 25 – Envigne

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	62 380
	Irrigation (P90)	16 146
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	263 977
	AEP	62 380 (0%)
Volumes prélevés hors basses eaux	Irrigation	112 283 (+700%)
eaux	Industrie	0 (0%)
Volumes complémen	89 314	

Tableau 79 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 25 – Envigne

5.1.25.4 Scénario « Agrégation temporelle maximisée »

Volume en m	Avril - Juin	Juillet - Octobre		
5 (1)	AEP	39 842	58 756	
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	50 204	105 201	
(2010-2019)	Industrie	0	0	
	AEP	39 842 (0%)	58 756 (0%)	
VP en basses eaux (m3) Irrigation		50 204 (0%)	97 012 (-8%)	
	Industrie	0	0	
Volumes compléme	93 515	0		

Tableau 80 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 25 – Envigne

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	62 380
	Irrigation (P90)	16 146
(2010 2015)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	263 977
АЕР		62 380 (0%)
Volumes prélevés hors basses eaux	Irrigation	16 146 (0%)
eaux	Industrie	0 (0%)
Volumes complémen	185 451	

Tableau 81 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 25 – Envigne

5.1.25.5 Scénario « Agrégation temporelle maximisée et stockage »

Volume en m	Avril - Juin	Juillet - Octobre	
2 (1)	AEP	39 842	58 756
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	50 204	105 201
(2010-2019)	Industrie	0	0
	AEP	39 842 (0%)	58 756 (0%)
VP en basses eaux (m3)	Irrigation	50 204 (0%)	97 012 (-8%)
	Industrie	0	0
Volumes compléme	93 515	0	

Tableau 82 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 25 – Envigne

Volume en m3	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	62 380
	Irrigation (P90)	16 146
	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	263 977
AEP		62 380 (0%)
Volumes prélevés hors basses eaux	Irrigation	24 335 (+150%)
Caux	Industrie	0 (0%)
Volumes complémen	177 262	

Tableau 83 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 25 – Envigne

5.1.26 UG 26 – Vienne entre le Clain et la Creuse

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	324 667	417 677	334 157	402 515	394 163	442 865	343 426	2 659 469
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	160 363	253 859	353 662	453 008	636 810	436 600	412 681	2 706 984
(2010-2013)	Industrie	51 447	51 447	51 447	51 447	51 447	51 447	51 447	360 128
	AEP	324 667 (0%)	417 677 (0%)	334 157 (0%)	402 515 (0%)	394 163 (0%)	442 865 (0%)	343 426 (0%)	2 659 469 (0%)
VP (m3)	Irrigation	160 363 (0%)	253 859 (0%)	353 662 (0%)	453 008 (0%)	636 810 (0%)	436 600 (0%)	412 681 (0%)	2 706 984 (0%)
	Industrie	51 447 (0%)	360 128 (0%)						
Volumes complé	mentaires*								

Tableau 84 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 26 – Vienne entre le Clain et la Creuse - (*) Volumes complémentaires temporaires dans l'attente du choix des scénarios de gestion des UG amont

Volume en	Volume en m3		
	AEP	1 779 929	
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	284 519	
(2010-2019)	Industrie	257 234	
Volumes disponibles hors basses eaux (m3)	Total	136 240 175	
	AEP	1 779 929 (0%)	
Volumes prélevables hors basses eaux	Volumes prélevables hors Irrigation		
basses eaux	Industrie	257 234 (0%)	
Volumes complér	133 918 493		

Tableau 85 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 26 – Vienne entre le Clain et la Creuse

5.1.27 UG 27 – Vienne aval

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	62 241	65 831	69 652	77 342	77 710	69 558	65 275	487 609
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	135 602	234 067	363 535	710 056	571 681	172 122	1 230	2 188 294
(2010-2019)	Industrie	10 303	10 303	10 303	10 303	10 303	10 303	10 303	72 124
	AEP	62 241 (0%)	65 831 (0%)	69 652 (0%)	77 342 (0%)	77 710 (0%)	69 558 (0%)	65 275 (0%)	487 609 (0%)
VP (m3)	Irrigation	135 602 (0%)	234 067 (0%)	363 535 (0%)	710 056 (0%)	571 681 (0%)	172 122 (0%)	1 230 (0%)	2 188 294 (0%)
	Industrie	10 303 (0%)	10 303 (0%)	72 124 (0%)					
Volumes complé	mentaires*	2 483 708	687 710	1 630 473	1 113 461	467 290	324 681	435 828	7 143 151

Tableau 86 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 27 – Vienne aval - (*) Volumes complémentaires temporaires dans l'attente du choix des scénarios de gestion des UG amont

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	310 142
	Irrigation (P90)	28 770
(2010-2019)	Industrie	51 517
Volumes disponibles hors basses eaux (m3)	Total	197 852 962
	AEP	310 142 (0%)
Volumes prélevables hors basses eaux	Volumes prélevables hors Irrigation	
basses edux	Industrie	51 517 (0%)
Volumes complér	197 462 533	

Tableau 87 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –UG 27 – Vienne aval

5.1.28 UG 28 – Bourouse 5.1.28.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	6 685	7 117	7 548	8 410	8 410	7 548	7 117	52 835
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	6 757	14 231	19 221	29 926	27 079	7 699	0	104 913
(2010-2019)	Industrie	0	0	0	0	0	0	0	0
	AEP	6 685 (0%)	7 117 (0%)	7 548 (0%)	8 410 (0%)	0 (-100%)	0 (-100%)	7 117 (0%)	36 877 (-30%)
VP (m3)	Irrigation	6 757 (0%)	14 231 (0%)	19 221 (0%)	29 926 (0%)	0 (-100%)	0 (-100%)	0	70 135 (-33%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	1 962	6 230	9 241	4 526	0	0	0	21 959

Tableau 88 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019) AEP Irrigation (P90)	AEP	33 425
	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	167 178
AEP		33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	133 753	

Tableau 89 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –UG 28 – Bourouse

5.1.28.2 Scénario « Agrégation temporelle seuillée en 2 périodes »

Volume en m3		Avril - Juin	Juillet - Octobre
	AEP	21 350	31 485
Prélèvements actuels (m3)	Irrigation (P90)	40 209	64 704
(2010-2019)	19) Industrie		0
	AEP	21 350 (0%)	31 485 (0%)
VP en basses eaux (m3)	Irrigation	40 209 (0%)	13 968 (-78%)
	Industrie	0	0
Volumes complémentaires		0	0

Tableau 90 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	33 425
	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	167 178
	AEP	33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	133 753	

Tableau 91 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 28 – Bourouse

5.1.28.3 Scénario « Agrégation temporelle seuillée en 2 périodes et stockage »

Volume en m3		Avril - Juin	Juillet - Octobre
	AEP	21 350	31 485
Prélèvements actuels (m3)	Irrigation (P90)	40 209	64 704
(2010-2019)	19) Industrie		0
	AEP	21 350 (0%)	31 485 (0%)
VP en basses eaux (m3)	Irrigation	40 209 (0%)	13 968 (-78%)
	Industrie	0	0
Volumes complémentaires		0	0

Tableau 92 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
- (1)	AEP	33 425
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	167 178
	AEP	33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	50 736 (-)
basses eaux	Industrie	0 (0%)
Volumes complér	83 017	

Tableau 93 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 28 – Bourouse

5.1.28.4 Scénario « Agrégation temporelle seuillée en 3 périodes »

Volume en m	Volume en m3		Juillet - Septembre	Octobre
	AEP	21 350	24 369	7 117
Prélèvements actuels (m3)	Irrigation (P90)	40 209	64 704	0
(2010-2019)	Industrie	0	0	0
	AEP	21 350 (0%)	24 369 (0%)	7 117 (0%)
VP en basses eaux (m3)	Irrigation	40 209 (0%)	13 968 (-78%)	0
	Industrie	0	0	0
Volumes complém	entaires	0	0	0

Tableau 94 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
	AEP	33 425
Prélèvements actuels (m3)	Irrigation (P90)	0
(2010-2019)	(2010-2019) Industrie	
Volumes disponibles hors basses eaux (m3)	Total	167 178
	AEP	33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	133 753	

Tableau 95 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 28 – Bourouse

5.1.28.5 Scénario « Agrégation temporelle maximisée en 2 périodes »

Volume en m3		Avril - Juin	Juillet - Octobre
	AEP	21 350	31 485
Prélèvements actuels (m3)	Irrigation (P90)	40 209	64 704
(2010-2019)	(2010-2019) Industrie		0
AEP		21 350 (0%)	31 485 (0%)
VP en basses eaux (m3)	Irrigation	40 209 (0%)	18 495 (-71%)
	Industrie	0	0
Volumes complémentaires		17 433	0

Tableau 96 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
	AEP	33 425
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	167 178
	AEP	33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	133 753	

Tableau 97 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 28 – Bourouse

5.1.28.6 Scénario « Agrégation temporelle maximisée et stockage en 2 périodes »

Volume en m3		Avril - Juin	Juillet - Octobre
	AEP	21 350	31 485
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	40 209	64 704
(2010-2019)	Industrie	0	0
	AEP		31 485 (0%)
VP en basses eaux (m3)	Irrigation	40 209 (0%)	18 495 (-71%)
Industrie		0	0
Volumes complémentaires		17 433	0

Tableau 98 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 28 – Bourouse

Volume en	Novembre – Mars	
	AEP	33 425
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	167 178
	AEP	33 425 (0%)
Volumes prélevables hors basses eaux	Irrigation	46 209 (-)
basses eaux	Industrie	0 (0%)
Volumes complér	87 544	

Tableau 99 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 28 – Bourouse

5.1.29 UG 29 – Manse

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	4 995	5 317	5 640	6 284	6 284	5 640	5 317	39 478
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	42 663	72 354	103 761	199 930	116 754	44 343	0	579 805
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	4 995 (0%)	5 317 (0%)	5 640 (0%)	6 284 (0%)	6 284 (0%)	5 640 (0%)	5 317 (0%)	39 478 (0%)
VP (m3)	Irrigation	42 663 (0%)	72 354 (0%)	103 761 (0%)	199 930 (0%)	116 754 (0%)	44 343 (0%)	0	579 805 (0%)
	Industrie	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Volumes comple	émentaires	64 535	75 838	65 862	3 478	7 848	26 139	52 445	296 145

Tableau 100 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 29 – Manse

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	24 976
	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	458 240
	AEP	24 976 (0%)
Volumes prélevables hors basses eaux	Irrigation	0 (0%)
basses edux	Industrie	0 (0%)
Volumes complér	433 264	

Tableau 101 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –UG 29 – Manse

5.1.30 UG 30 – Veude

5.1.30.1 Scénario diagnostic

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	34 346	35 585	38 200	38 801	40 818	36 407	32 707	256 864
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	87 447	125 332	214 602	389 295	321 421	96 744	32	1 234 873
(2010-2013)	Industrie	0	0	0	0	0	0	0	0
	AEP	34 346 (0%)	35 585 (0%)	38 200 (0%)	0 (-100%)	0 (-100%)	0 (-100%)	32 707 (0%)	140 839 (-45%)
VP (m3)	Irrigation	87 447 (0%)	125 332 (0%)	214 602 (0%)	0 (-100%)	0 (-100%)	0 (-100%)	32 (0%)	552 244 (-55%)
	Industrie	0	0	0	0	0	0	0	0
Volumes comple	émentaires	9 485	11 610	14 550	0	0	0	124 831	160 477

Tableau 102 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	992 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	758 746	

Tableau 103 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.2 Scénario « Agrégation temporelle seuillée en 2 périodes »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	108 132	148 732
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	427 381	807 492
(2010-2019)	Industrie	0	0
	AEP	108 132 (0%)	32 739 (-78%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	0 (-100%)
	Industrie	0	0
Volumes complémentaires		0	0

Tableau 104 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors	Irrigation	992 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	758 746	

Tableau 105 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.3 Scénario « Agrégation temporelle seuillée en 3 périodes »

Volume en m3		Avril - Juin	Juillet - Septembre	Octobre
	AEP	108 132	116 026	32 707
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	427 381	807 460	32
(2010-2019)	Industrie	0	0	0
	AEP	108 132 (0%)	116 026 (0%)	32 739 (0%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	0 (-100%)	32 (0%)
	Industrie	0	0	0
Volumes complémentaires		0	0	0

Tableau 106 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	992 (0%)
basses eaux	Industrie	0 (0%)
Volumes complér	758 746	

Tableau 107 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.4 Scénario « Agrégation temporelle seuillée en 2 périodes et stockage »

Volume en m	Avril - Juin	Juillet - Octobre		
	AEP	108 132	148 732	
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	427 381	807 492	
(2010-2019)	Industrie	0	0	
	AEP	108 132 (0%)	32 739 (-78%)	
VP en basses eaux (m3)	Irrigation	427 381 (0%)	0 (-100%)	
Industrie		0	0	
Volumes compléme	0	0		

Tableau 108 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	759 738 (>1000%)
basses edux	Industrie	0 (0%)
Volumes complér	0	

Tableau 109 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.5 Scénario « Compromis seuillée »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	108 132	148 732
Prélèvements actuels (m3)	Irrigation (P90)	427 381	807 492
(2010-2019)	Industrie	0	0
	AEP	108 132 (0%)	148 732 (0%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	191 833 (-76%)
	Industrie	0	0
Volumes complémentaires		0	0

Tableau 110 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	308 820 (>1000%)
basses edux	Industrie	0 (0%)
Volumes complér	450 918	

Tableau 111 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.6 Scénario « Agrégation temporelle maximisée en 2 périodes »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	108 132	148 732
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	427 381	807 492
(2010-2019)	Industrie	0	0
	AEP	108 132 (0%)	148 732 (0%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	9 108 (-99%)
	Industrie	0	0
Volumes complémentaires		35 644	0

Tableau 112 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux Irrigation		992 (0%)
basses edux	Industrie	0 (0%)
Volumes complér	758 746	

Tableau 113 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.7 Scénario « Agrégation temporelle maximisée en 2 périodes et stockage »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	108 132	148 732
Prélèvements actuels (m3)	Irrigation (P90)	427 381	807 492
(2010-2019)	Industrie	0	0
	AEP	108 132 (0%)	148 732 (0%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	9 108 (-99%)
	Industrie	0	0
Volumes complémentaires		35 644	0

Tableau 114 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	759 738 (>1000%)
basses edux	Industrie	0 (0%)
Volumes complér	0	

Tableau 115 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.30.8 Scénario « Compromis maximisé »

Volume en m	Avril - Juin	Juillet - Octobre	
	AEP	108 132	148 732
Prélèvements actuels (m3)	Irrigation (P90)	427 381	807 492
(2010-2019)	Industrie	0	0
	AEP	108 132 (0%)	148 732 (0%)
VP en basses eaux (m3)	Irrigation	427 381 (0%)	275 235 (-66%)
	Industrie	0	0
Volumes complémentaires		35 644	0

Tableau 116 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 30 – Veude

Volume en	Novembre – Mars	
Prélèvements actuels (m3)	AEP	160 289
	Irrigation (P90)	992
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	920 027
	AEP	160 289 (0%)
Volumes prélevables hors basses eaux	Irrigation	267 120 (> 1000%)
basses edux	Industrie	0 (0%)
Volumes complér	491 626	

Tableau 117 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux – UG 30 – Veude

5.1.31 UG 31 – Négron

Volume e	n m3	Avril	Mai	Juin	Juil	Août	Sept.	Oct.	BE
	AEP	40 990	43 634	46 279	51 568	51 568	46 279	43 634	323 950
Prélèvements actuels (m3) (2010-2019)	Irrigation (P90)	42 223	84 587	174 385	339 300	206 502	79 851	0	926 848
(2010-2013)	Industrie	1 453	1 453	1 453	1 453	1 453	1 453	1 453	10 169
	AEP	36 891 (-10%)	39 271 (-10%)	41 651 (-10%)	46 411 (-10%)	46 411 (-10%)	41 651 (-10%)	39 271 (-10%)	291 555 (-10%)
VP (m3)	Irrigation	38 001 (-10%)	76 128 (-10%)	156 947 (-10%)	305 370 (-10%)	185 851 (-10%)	71 866 (-10%)	0	834 163 (-10%)
	Industrie	1 307 (-10%)	1 307 (-10%)	1 307 (-10%)	1 307 (-10%)	1 307 (-10%)	1 307 (-10%)	1 307 (-10%)	9 152 (-10%)
Volumes comple	émentaires	0	0	0	0	0	0	0	0

Tableau 118 : Répartition des volumes prélevables par usage et par mois sur la période de basses eaux – UG 31 – Négron

Volume en	Novembre – Mars	
Prélèvements actuels (m3) (2010-2019)	AEP	204 948
	Irrigation (P90)	0
(2010-2019)	Industrie	0
Volumes disponibles hors basses eaux (m3)	Total	258 453
	AEP	204 948 (0%)
Volumes prélevables hors basses eaux	Volumes prélevables hors Irrigation	
basses edux	Industrie	0 (0%)
Volumes complér	53 505	

Tableau 119 : Répartition des volumes prélevables par usage et par mois sur la période hors basses eaux –UG 31 – Négron

6 Conclusions et suite de l'étude

Le présent rapport a permis d'identifier, sur la base des analyses réalisées en phase 1 dans le cadre des 4 volet H. M. U. et C., les unités de gestion se trouvant dans l'état le plus critique du point de vue de la gestion quantitative. Il apparaît que l'aval du bassin est le plus touché, tandis que l'amont présente des problématiques plus modérées en période actuelle. Le fonctionnement des milieux du bassin versant est fortement altéré par :

- De manière générale, la présence de désordres morphologiques et de milieux aquatiques altérés ;
- ▶ De manière plus ou moins prononcée selon les unités de gestion, une forte pression des usages en période de basses eaux.
- ▶ Pour les VP hors période de basses eaux, les conditions de prélèvements sont très rarement réunies lors du mois de novembre car les débits des cours d'eau sont inférieurs au module. Les volumes théoriquement disponibles hors période de basses eaux sont excédentaires en comparaison aux volumes actuellement prélevés hormis pour quelques UG situées à l'aval du bassin comme la Veude (UG 30) ou la Bourouse (UG 28) ou encore le Ruisseau du Palais qui fait l'objet de prélèvements en retenue pour l'eau potable.
- ► En période de basses eaux, le scénario d'objectivation permet d'identifier 22 UG sur lesquelles il n'y aucun problème quantitatif pendant la période de basses eaux, c'est-à-dire que les volumes prélevables dégagés suite à la fixation du DOE mensuel respectant le besoin des milieux permettent de satisfaire les usages de références actuels au minimum 8 années sur 10.
- Les résultats de l'application du scénario d'objectivation permettent également d'identifier 9 UG sur lesquelles certains mois de la période de basses eaux sont en déficit quantitatif (VP < volumes prélevés de références) pour l'ensemble des usages (pas d'abaissement du DOE en dessous du débit biologique bas). Les déficits quantitatifs en étiage sont observés principalement aux mois d'août et de septembre. Pour ces 9 UG, il a été convenu d'adapter la méthodologie de phase 2 afin de travailler et de proposer des scénarios alternatifs de gestion structurelle pour trouver le meilleur équilibre entre les aspects environnementaux, sociaux et économiques. Une analyse multicritère intégrant l'ensemble des éléments techniques, contextuels, environnementaux, sociaux et économiques a été menée en parallèle pour éclairer les membres des CLE des deux SAGE concernés et les aider à choisir un scénario de gestion cohérent avec les intérêts des territoires (Cf Section 4.3).

Afin de remédier à ces altérations, la prochaine étape va consister à proposer des seuils de gestion structurelle à l'échelle mensuelle (afin de tenir compte des spécificités de chaque période de l'année en matière d'usages et de fonctionnement naturel) au niveau de chaque unité de gestion, en tenant compte des enjeux des milieux et des usages anthropiques de l'eau, avec comme ligne directrice l'atteinte du bon état écologique. Lors de ce processus, le principe de solidarité amont-aval sera appliqué afin d'assurer un équilibre de traitement entre les différentes unités de gestion.

Les seuils de gestion identifiés permettront d'analyser le mode de gestion actuel de l'eau, dont la large majorité des prélèvements a lieu en étiage c'est-à-dire au moment de l'année où la ressource est la plus fragile.

Les volumes prélevables définis appellent à une révision en profondeur de la gestion de l'eau du territoire d'étude, qui devront se matérialiser par la combinaison de solutions variées impliquant :

- ▶ Une adaptation des pratiques en matière d'usages et des mesures d'économie d'eau ;
- ▶ A plus long terme, la restauration progressive des cours d'eau, des zones humides, et la mise en œuvre de pratiques favorables à l'acheminement de l'eau vers le milieu naturel. Ces dernières pourront permettre de préserver l'usage anthropique de l'eau en adéquation avec le bon fonctionnement des milieux, dans un contexte de changement climatique.

Les analyses réalisées dans le présent rapport serviront de base au travail à mener en phase 3, qui impliquera notamment :

- La répartition des volumes prélevables par type d'usage ;
- ▶ Une réflexion sur les seuils de gestion de crise en vigueur et l'opportunité de les adapter ;
- ▶ Une réflexion sur les actions à mener (de connaissance, réglementaires et concrètes).

7 Définitions, glossaire et acronymes

7.1 Définitions

- Unité de gestion (UG): Il s'agit des unités géographiques de référence du bassin versant, définies en fonction de leurs caractéristiques en matière de milieux et d'usages (objectif d'homogénéité par unité). Chaque unité de gestion consiste en un sous-bassin versant hydrographique du territoire étudié dont l'exutoire correspond à un point nodal pour lequel une gamme de débits biologiques a été évaluée, et pour lequel un débit objectif d'étiage sera proposé. Le bilan de la ressource en eau et des usages est établi par unité de gestion.
- Evapotranspiration potentielle (ETP): Quantité maximale d'eau susceptible d'être évaporée par évapotranspiration sous un climat donné par un couvert végétal continu bien alimenté en eau.
 Elle comprend donc l'évaporation du sol/substrat et la transpiration de la végétation d'une région donnée pendant le temps considéré. Elle s'exprime en hauteur d'eau.
- Débit : Volume d'eau qui traverse un point donné d'un cours d'eau dans un laps de temps déterminé.
- o **Débit spécifique :** Débit divisé par la superficie du bassin versant drainé. Ce type de donnée permet de comparer le comportement hydrologique de cours d'eau de différentes ampleurs.
- Débit de base : Part du débit total d'un cours d'eau provenant du compartiment souterrain. L'autre composante du débit total est le débit ruisselé.
- Module : Débit moyen interannuel

Le module est la **moyenne des débits moyens annuels** calculés sur une année hydrologique et sur l'ensemble de la période d'observation de la station. Ce débit donne une indication sur le volume annuel moyen écoulé et donc sur la disponibilité globale de la ressource d'un bassin versant. Il doit être calculé sur une période d'observations suffisamment longue pour être représentative des débits mesurés ou reconstitués.

Il a valeur de référence réglementaire, notamment dans le cadre de l'article L214-18 du code de l'environnement et de sa circulaire d'application du 5 juillet 2011 fixant au dixième du module désinfluencé la valeur plancher du débit à laisser en aval d'un ouvrage dans le lit d'un cours d'eau.

 Débit moyen mensuel (QMM): Moyenne, pour un mois donné, des débits moyens journaliers mesurés

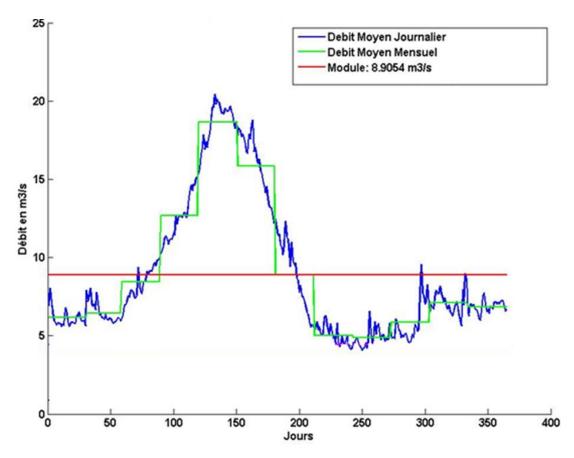


Figure 13 : Exemple de représentation graphique du débit moyen journalier, du débit moyens mensuel et du module d'un cours d'eau sur une année donnée

o VCNd : Débit minimum de l'année calculé sur d jours consécutifs

Les VCNd sont des valeurs extraites annuellement en fonction d'une durée fixée « d ».

- Le **VCN3** permet de caractériser une situation d'étiage sévère sur une courte période (3 jours).
- Les **VCN7** et **VCN10** correspondent à des valeurs réglementaires dans de nombreux pays et sont très utilisés d'une manière générale dans les travaux portant sur les étiages.

<u>Nota</u>: Il est intéressant de comparer le QMNA au VCN30. Le VCN30 correspond à la moyenne mobile la plus faible de l'année calculée sur 30 jours consécutifs, car il se rapproche en termes de durée de l'échelle mensuelle. Ces deux grandeurs devraient être proches, mais dans certains contextes des écarts importants peuvent apparaître, notamment lors d'années pluvieuses et dans le cas de bassins imperméables qui ont une réponse rapide aux impulsions pluviométriques.

Etiage

Une certaine ambiguïté subsiste quant à la définition du terme « étiage ». Ces dernières convergent toutefois vers les notions suivantes :

Une période durant laquelle le débit du cours d'eau considéré est non seulement inférieur au module, mais, de plus, particulièrement bas. Cette période peut être identifiée comme étant celle durant laquelle le débit est inférieur à une valeur « seuil » calculée statistiquement selon des modalités choisies en fonction de la situation considérée;

- Une période durant laquelle le niveau des nappes est également particulièrement bas ;
- Un événement qui n'est pas nécessairement exceptionnel. Ceci dépend de la sévérité de l'étiage,
 qui doit être caractérisée au moyen d'indicateurs statistiques appropriés;
- Une période durant laquelle seules les nappes, en voie d'épuisement, contribuent au débit du cours d'eau (absence de pluie);
- Un événement qui se décrit non seulement par la valeur de débit non-dépassée, mais également par sa durée.

Quelle que soit la définition considérée, un étiage s'identifie, se caractérise et se délimite à l'aide d'au moins un indicateur nommé « débit caractéristique d'étiage ». Ce dernier peut se définir à partir de débits journaliers, de débits mensuels, ou encore de moyennes mobiles calculées sur plusieurs jours. Il est également possible de caractériser les étiages à partir d'un débit seuil, en comptabilisant le nombre de jours sous ce seuil.

Afin de pouvoir bien appréhender la complexité d'un étiage, il est préférable de s'appuyer sur une série de débits caractéristiques d'étiage différents, et non un seul. La définition des principaux types de débits caractéristiques d'étiage est détaillée ci-après.

QMNA : Débit moyen mensuel minimum de l'année

Il s'agit de la variable usuellement employée par les services gestionnaires pour caractériser les étiages d'un cours d'eau. Il s'agit, pour une année donnée, du débit moyen mensuel (= moyenne des débits journaliers sur un mois) le plus bas de l'année.

QMNA5 : Débit d'étiage quinquennal

Le QMNA5 correspond au débit moyen mensuel minimum de période de retour 5 ans, c'est-à-dire ayant une chance sur cinq de ne pas être dépassé pour une année donnée.

Le QMNA5 est également mentionné dans la circulaire du 3 août 2010 du ministère en charge de l'écologie (NOR : DEVO1020916C) : « Le débit de l'année quinquennale sèche correspond, en se référant aux débits des périodes de sécheresse constatés les années précédentes, à la valeur la plus faible qui risque d'être atteinte une année sur cinq. La probabilité d'avoir un débit supérieur à cette valeur est donc de quatre années sur cinq ». Le QMNA5, dont on peut considérer qu'il reflète indirectement un potentiel de dilution et un débit d'étiage typiques d'une année sèche, est utilisé dans le traitement des dossiers de rejet et de prélèvement en eau en fonction de la sensibilité des milieux concernés. Le QMNA5 sert en particulier de référence aux débits objectifs d'étiage (DOE - voir ce terme).

Le QMNA5 est une valeur règlementaire qui présente l'inconvénient d'être soumise à l'échelle calendaire. Les débits d'étiage peuvent en effet être observés durant une période chevauchant deux mois, induisant une surestimation du débit d'étiage par le QMNA. Pour cette raison, même si le QMNA5 reste une valeur réglementaire, l'évaluation des niveaux de débit en période d'étiage s'appuie préférentiellement sur des données journalières.

Débit mensuel interannuel quinquennal sec (QMN5)

Débit mensuel quinquennal sec. Il s'agit d'un indicateur caractérisant les conditions hydrologiques d'un cours d'eau en situation de stress, sur un mois calendaire donné. Pour un mois calendaire donné, il donne la valeur de débit moyen mensuel ayant une chance sur 5 de ne pas être atteinte sur une année

donnée. Par exemple, si le QMN5 du mois de janvier d'un cours d'eau donné est de 50L/s, cela signifie qu'il y a une chance sur 5 que le débit moyen du mois de janvier de ce cours d'eau, sur une année donnée, soit inférieur à cette valeur ;

QMN1.75

Pour un mois considéré, il correspond au débit mensuel qui a une probabilité de 3/7 d'être dépassé chaque année (et donc une probabilité de 4/7 = 1/1.75 de ne pas être atteint chaque année). Cette métrique est utilisée dans le cadre de l'évaluation du fonctionnement des frayères à Brochet, qui doivent normalement fonctionner 3 années sur 7 en moyenne.

Débit d'étiage vs débit caractéristique d'étiage

Un débit d'étiage consiste en une valeur caractérisant l'étiage d'un cours d'eau sur une période délimitée dans le temps. Exemples :

- Le QMNA de l'année 2010 correspond au débit mensuel (calendaire) le plus bas de l'année 2010 ;
- Le VCN10 de l'année 2011 correspond au plus bas débit calculé sur 10 jours consécutifs de l'année 2011.

Un débit caractéristique d'étiage consiste en une valeur issue d'une série de débits d'étiage et associée à une probabilité d'occurrence (ou fréquence). Exemples :

- Le VCN10 de période de retour 5 ans correspond au VCN 10 ayant une probabilité de 1/5 de ne pas être dépassé sur une année donnée ;
- Le QMNA5 correspond au QMNA ayant une probabilité de 1/5 de ne pas être dépassé sur une année donnée.

Dans le cadre de la présente étude, une gamme de débits caractéristiques d'étiage sera calculée en chaque point de référence :

- QMNA interannuel, QMNA2, QMNA5,
- Débits mensuels interannuels quinquennaux secs,
- VCN10 et VCN3 (annuel, biennal et quinquennal),
- 1/10ème module, 1/20ème module.

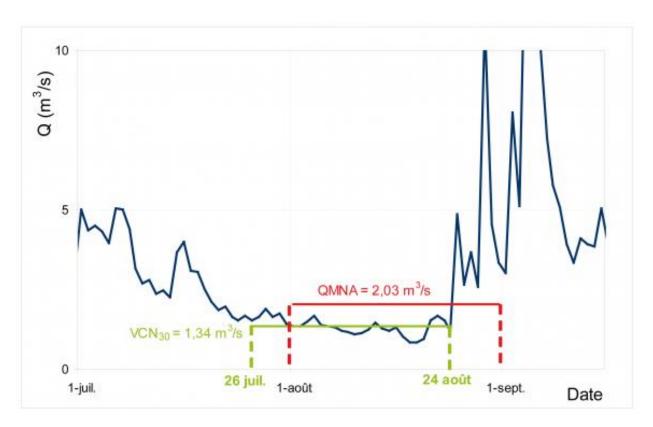


Figure 14: Exemple de représentation graphique du VCN30 et du QMNA d'un cours d'eau donné sur une année donnée

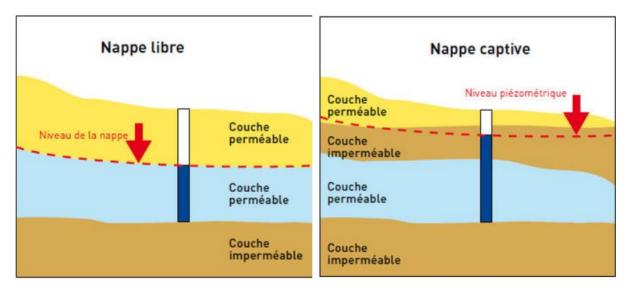


Figure 15 : Représentation schématique du niveau piézométrique dans un contexte de nappe libre (gauche) et de nappe captive (droite)

Nappe d'accompagnement :

Nappe d'eau souterraine voisine d'un cours d'eau dont les propriétés hydrauliques sont très liées à celles du cours d'eau. L'exploitation d'une telle nappe induit une diminution du débit d'étiage du cours d'eau, soit parce que la nappe apporte moins d'eau au cours d'eau, soit parce que le cours d'eau se met à alimenter la nappe (Source : Glossaire Eau et Biodiversité) ;

Prélèvement net

Le prélèvement net correspond à la soustraction des rejets aux prélèvements, sur un territoire donné. Il permet de rendre compte de la quantité d'eau réellement soustraite à un bassin versant, au niveau de son exutoire.

Retenue (réserve) de substitution

Ouvrage artificiel permettant de substituer des volumes prélevés en période de basses eaux par des volumes prélevés hors période de basses eaux. Les retenues de substitution permettent de stocker l'eau par des prélèvements anticipés ne mettant pas en péril les équilibres hydrologiques, elles viennent en remplacement de prélèvements existants. (Source: http://circulaires.legifrance.gouv.fr). Pour le Sdage du bassin Loire-Bretagne, sa conception la rend impérativement étanche et déconnectée du milieu naturel aquatique. Pour pouvoir être considéré comme une retenue de substitution, un ouvrage qui intercepterait des écoulements doit impérativement être équipé d'un dispositif de contournement garantissant qu'audelà de son volume et en dehors de la période autorisée pour le prélèvement, toutes les eaux arrivant en amont de l'ouvrage ou à la prise d'eau sont transmises à l'aval, sans retard et sans altération. (Source: glossaire du SDAGE Loire-Bretagne 2022-2027).

Période de basses eaux (période d'étiage selon le SDAGE 2016-2021³)

Dans le cadre du rapport du volet « Hydrologie » de la présente étude, en phase 1, une période d'étiage s'étendant de juillet à octobre a été définie. Cette dernière avait pour objectif d'identifier une période de débits particulièrement bas devant servir de référence pour le calage des modélisations et la présentation des résultats.

Selon le SDAGE 2022-2027, on ne parle plus de période d'étiage mais de période de basses eaux : C'est la période de l'année pendant laquelle le **débit des cours d'eau atteint ses valeurs les plus faibles**. Cette période est prise en compte par le préfet pour délivrer les **autorisations de prélèvement en période de basses eaux et pour mettre en place des mesures de gestion de crise (orientation 7E). En Loire-Bretagne, la période de basses eaux conjuguant sensibilité pour les milieux aquatiques et impact accru des prélèvements s'étend du 1er avril au 31 octobre**. La CLE peut, <u>à la suite d'une analyse HMUC</u>, proposer au préfet de retenir une période de basses eaux différente. <u>Elle ne peut pas être inférieure à une durée de 7 mois</u>.

Période hors période de basses eaux (période hivernale selon le SDAGE 2016-2021⁴)

Période de l'année pendant laquelle les valeurs les plus hautes des débits des cours d'eau, sont observées. Elle est définie aux dispositions 7B-1 et 7D-3 du Sdage. Elle s'étend du 1^{er} novembre au 31 mars. C'est au cours de cette dernière que sont autorisés les prélèvements visant à alimenter les réserves de substitution. Cette période est complémentaire de la période de basses eaux.

_

³ Selon le SDAGE 2022-2027 : on ne parle plus de période d'étiage mais de période de basses eaux.

⁴ Selon le SDAGE 2022-2027 : on ne parle plus de période hivernale mais de période hors période de basses eaux

Gestion structurelle

La gestion structurelle regroupe toutes les initiatives permettant de restaurer l'équilibre durable entre besoins et ressources. Il s'agit de limiter les pressions de prélèvement, à travers notamment le respect de volumes prélevables et l'encadrement des prélèvements. L'équilibre structurel de la ressource s'observe à travers les indicateurs de Débit et de Piézométrie Objectif d'Etiage (DOE, POE)

Les notions relatives à la gestion structurelle sont décrites ci-après :

► Débit Objectif d'Etiage : DOE

Les DOE (débits d'objectif d'étiage) sont les débits « permettant de satisfaire l'ensemble des usages en moyenne huit années sur dix et d'atteindre le bon état des eaux⁵ ». (Source : II de l'article 6 de l'arrêté ministériel du 17 mars 2006 relatif au contenu des Sdage, www.legifrance.gouv.fr/affichTexte. do?cidTexte=JORFTEXT000000609821)

Le Glossaire sur l'eau apporte les précisions suivantes : Valeur de débit moyen mensuel au point nodal (point clé de gestion) au-dessus de laquelle, il est considéré qu'à l'aval du point nodal, l'ensemble des usages (activités, prélèvements, rejet...) est en équilibre avec le bon fonctionnement du milieu aquatique. C'est un objectif structurel, arrêté dans les Sdage, Sage et documents équivalents, qui prend en compte le développement des usages à un certain horizon. Il peut être affecté d'une marge de tolérance et modulé dans l'année en fonction du régime (saisonnalité). L'objectif DOE est atteint par la maîtrise des autorisations de prélèvements en amont, par la mobilisation de ressources nouvelles et des programmes d'économies d'eau portant sur l'amont et aussi par un meilleur fonctionnement de l'hydrosystème. (Source : Glossaire Eau et Biodiversité)

o L'orientation fondamentale 7A du Sdage Loire-Bretagne complète en précisant ceci :

le DOE est un débit moyen mensuel d'étiage au-dessus duquel il est considéré que, dans la zone d'influence du point nodal, l'ensemble des usages est possible en équilibre avec le bon fonctionnement du milieu aquatique. Défini par référence au débit moyen mensuel minimal de fréquence quinquennale sèche (QMNA5), il permet de fixer un objectif stratégique, qui est de respecter cette valeur en moyenne huit années sur dix; le respect de ce débit conçu sur une base mensuelle s'apprécie sur cette même base temporelle. Ainsi, sa première fonction est de servir de référence aux services de police des eaux, dans l'instruction des autorisations et déclarations; en revanche, la notion ne permet pas d'utilisation au quotidien (ce qui est rôle de la gestion de crise).

Dans le Sdage Loire-Bretagne, le DOE est défini par référence au débit moyen mensuel minimal de fréquence quinquennale sèche (QMNA5). La connaissance des valeurs désinfluencées (avant influences anthropiques) de ce débit n'est actuellement que très partielle et insuffisamment homogène : le choix est donc fait de prendre comme référence générale les valeurs mesurées, représentatives de l'ensemble des influences anthropiques actuelles. La détermination des valeurs caractéristiques désinfluencées au sein des analyses HMUC (hydrologie, milieux, usages, climat) constitue un éclairage indispensable à toute

122

⁵ L'état d'une eau de surface – cours d'eau, plan d'eau, littoral et estuaire – se définit par son état écologique et son état chimique. Il faut que les deux soient au moins « bons » pour qu'elle puisse être déclarée en bon état (source : AELB)

analyse du fonctionnement de la zone considérée, et pourra contribuer à consolider ou préciser la valeur à fixer aux différents seuils, dont les DOE.

Point Nodal

Point clé pour la gestion des eaux défini en général à l'aval des unités de références hydrographiques pour les Schémas d'aménagement et de gestion des eaux (SAGE) et/ou à l'intérieur de ces unités dont les contours peuvent être déterminés par les Schémas directeurs d'aménagement et de gestion des eaux (SDAGE). A ces points peuvent être définies en fonction des objectifs généraux retenus pour l'unité, des valeurs repères de débit et de qualité. Leur localisation s'appuie sur des critères de cohérence hydrographique, écosystémique, hydrogéologique et socio-économique (source : Glossaire Eau et Biodiversité).

► Piézométrie objective d'Etiage : POE

Par analogie au DOE, à l'échelle du bassin et en référence au II de l'article 6 de l'arrêté modifié du 17 mars 2006 relatif au contenu des Sdage, la POE (piézométrie d'objectif d'étiage) est le niveau piézométrique (niveau de l'aquifère) « permettant de satisfaire l'ensemble des usages en moyenne huit années sur dix et d'atteindre le bon état des eaux ».

► PMNA5 : piézométrie d'étiage quinquennal

A l'image du QMNA5 pour le débit, la PMNA5 correspond à la piézométrie moyenne mensuelle minimum de période de retour 5 ans, c'est-à-dire ayant une chance sur cinq de ne pas être dépassé pour une année donnée.

► Piézométrie moyenne mensuelle (PMM) :

Moyenne, pour un mois donné, de la piézométrie moyenne journalière mesurée.

▶ Piézométrie objective Hivernale : POH

La POH est le niveau piézométrique hivernal à respecter pour préserver les niveaux de nappe de l'été subséquent.

▶ Volume prélevable

[Issu de l'article R211-21-1 du Code de l'Environnement] :

Dans les bassins ciblés par la stratégie visée au II de l'article R. 213-14, on entend par volume prélevable, le volume maximum que les prélèvements directs dans la ressource en période de basses eaux, autorisés ou déclarés tous usages confondus, doivent respecter en vue du retour à l'équilibre quantitatif à une échéance compatible avec les objectifs environnementaux du schéma directeur d'aménagement et de gestion des eaux.

Ce volume prélevable correspond au volume pouvant statistiquement être prélevé huit années sur dix en période de basses eaux dans le milieu naturel aux fins d'usages anthropiques, en respectant le bon fonctionnement des milieux aquatiques dépendant de cette ressource et les objectifs environnementaux du schéma directeur d'aménagement et de gestion des eaux.

Il est issu d'une évaluation statistique des besoins minimaux des milieux sur la période de basses eaux. Il est réparti entre les usages, en tenant compte des enjeux environnementaux, économiques et sociaux, et dans les conditions définies au II de l'article R. 213-14.

Un volume prélevable s'applique à la zone d'influence du point nodal auquel il est associé.

Dans le cadre de la présente étude, la notion de volume prélevable est étendue à la période hors période de basses eaux, conformément aux principes édictés aux dispositions 7D-5 à 7D-7 du SDAGE.

Ne sont pas pris en compte les volumes non soumis à déclaration ou autorisation de prélèvements tels que les volumes liés à l'abreuvement direct dans le milieu ou les volumes diffus comme ceux évaporés par les plans d'eau (source : Guide et recommandations méthodologiques pour les analyses HMUC, juin 2022).

► Volume potentiellement mobilisable

Pour désigner le volume qui peut être mobilisé dans le milieu naturel par l'ensemble des usages au sens large, qu'ils soient réglementés ou non, on parlera de volume potentiellement mobilisable.

Pour obtenir le volume prélevable, on passe par le calcul de deux métriques préalables ; le volume potentiellement mobilisable net (VPM net) et le volume potentiellement mobilisable brut (VPM brut) :

- Le VPM net est le volume obtenu par soustraction du DOE à l'hydrologie désinfluencée;
- Le VPM brut est obtenu par addition des rejets moyens au VPM net.

o Gestion conjoncturelle ou gestion de crise

La gestion conjoncturelle ou gestion de crise s'intéresse à des déséquilibres ponctuels (période de sécheresse). Elle vise à définir des seuils de surveillance du milieu et à prendre les mesures nécessaires pour anticiper leur franchissement.

► Les notions énoncées par le SDAGE Loire-Bretagne 2016-2021 relatives à la gestion conjoncturelle sont décrites ci-après :

Débit seuil d'alerte : DSA

À l'échelle du bassin Loire-Bretagne, le DSA est un débit moyen journalier en dessous duquel une des activités utilisatrices d'eau ou une des fonctions du cours d'eau est compromise. Le DSA est donc un seuil de déclenchement de mesures correctives. La fixation de ce seuil tient également compte de l'évolution naturelle des débits et de la nécessaire progressivité des mesures pour ne pas atteindre le DCR. Le DSA constitue, en tant que seuil d'alerte, un seuil de déclenchement de restrictions et de mesures associées, en référence à l'Instruction du 27 juillet 2021 (NOR: TREL2119797J) relative à la gestion des situations de crise liées à la sécheresse hydrologique ;

Débit de Crise : DCR

Le DCR est le débit moyen journalier en dessous duquel seules les exigences de la santé, de la salubrité publique, de la sécurité civile et de l'alimentation en eau potable de la population et les besoins des milieux naturels peuvent être satisfaits. Il s'agit d'une valeur opérationnelle suivie au quotidien.

À ce niveau, toutes les mesures de restriction des prélèvements et des rejets doivent donc avoir été mises en œuvre. (Source : Il de l'article 6 de l'arrêté ministériel du 17 mars 2006 relatif au contenu des Sdage, www.legifrance.gouv.fr/affichTexte. do?cidTexte=JORFTEXT000000609821)

Piézométrie d'Alerte (PSA) et Piézométrie de Crise (PCR)

Ces notions répondent aux mêmes principes que ceux édictés pour leur équivalentes débitmétriques.

Mise en perspective gestion structurelle et de crise

La gestion structurelle a une portée stratégique, c'est-à-dire qu'elle a pour objectif de dimensionner les usages de l'eau (ou d'encadrer les prélèvements) de telle manière qu'ils soient en adéquation durable avec la disponibilité de la ressource en eau et les besoins des milieux.

La gestion de crise a une portée conjoncturelle, c'est-à-dire qu'elle a pour objectif de répondre à des déséquilibres ponctuels de sécheresse par la réduction et/ou l'arrêt des prélèvements.

Ces deux notions ont donc des portées différentes, mais elles doivent être traitées de manière cohérente. En effet, l'objectif est d'aboutir, pour chaque type de gestion, à des seuils permettant de faire en sorte que le fonctionnement des milieux soit garanti, tout en assurant un usage anthropique de l'eau optimisé (suffisant et régulier).

Débit biologique : DB

Le débit biologique est le débit minimum à laisser dans un cours d'eau en période de basses eaux pour garantir la vie, la circulation et la reproduction des espèces aquatiques y vivant (macrophytes, poissons, macro invertébrés, ...). Le débit biologique est préférentiellement déterminé par les méthodes dites micro-habitats, les plus utilisées étant la méthode EVHA et la méthode ESTIMHAB. En phase 1, une gamme de débits biologiques a été évaluée avec un seuil haut et un seuil bas.

Le débit biologique est, sur un cours d'eau donné et pour une période où une situation hydrologique donnée (par exemple la période d'étiage), le débit en dessous duquel les conditions permettant de garantir la vie, la circulation et la reproduction des espèces y vivant (macrophytes, poissons, macro invertébrés, ...) ne sont pas respectées. Ainsi, pour un cours d'eau donné, il est possible de définir différents débits biologiques selon la période considérée, afin de refléter le besoin de fluctuation de débits exprimé par le milieu. Dans le cadre des études HMUC, le débit biologique a pour objectif de servir de base (non exclusive) à la détermination du débit objectif d'étiage (DOE).

Toujours dans le cadre des études HMUC, le débit biologique n'est pas défini par une seule valeur, mais par une gamme comprise entre deux valeurs :

- **Le débit critique**, en dessous duquel les conditions de vie aquatique connaissent une dégradation rapide ;
- **Le débit d'accroissement du risque**, constituant une limite basse adéquate à respecter pour un bon maintien de la vie aquatique.

O Gamme de débits biologiques (DB) estivale (d'avril à octobre inclus) :

Il s'agit de la gamme de débits marquant une transition, pour la période estivale uniquement, entre une configuration favorable au bon développement des milieux (marge haute de la gamme), et une configuration de mise en péril de ces derniers (marge basse de la gamme) En cohérence avec l'article L214-18, la limite basse de fixation de la gamme de débits biologiques correspond au 1/10ème de module désinfluencé;

Surface pondérée utile (SPU) :

Il s'agit d'un indicateur de la qualité de l'habitat hydraulique d'un cours d'eau en fonction du débit. Il permet d'évaluer, pour une espèce cible ou une guilde cible donnée et à un débit donné, la surface disponible au sein de laquelle les paramètres déterminants pour son habitat (hauteur et vitesse d'écoulement, granulométrie) sont respectés

7.2 Glossaire

- Les définitions présentées ci-dessous proviennent des sites http://www.glossaire-eau.fr/glossaire, https://www.sandre.eaufrance.fr/, http://www.hydro.eaufrance.fr/glossaire.php et du SDAGE Loire-Bretagne 2016-2021.
- Affluent : Se dit d'un cours d'eau qui rejoint un autre cours d'eau, généralement plus important, en un lieu appelé confluence ;
- Amont : Partie d'un cours d'eau qui, par rapport à un point donné, se situe entre ce point et sa source
 ;
- Aquifère: Formation géologique, continue ou discontinue, contenant de façon temporaire ou permanente de l'eau mobilisable, constituée de roches perméables (formation poreuses, karstiques ou fissurées) et capable de la restituer naturellement ou par exploitation (drainage, pompage, ...);
- Assec : Assèchement temporaire d'un cours d'eau ou d'un tronçon de cours d'eau ou d'un plan d'eau
 :
- Aval : Partie d'un cours d'eau qui, par rapport à un point donné, se situe après ce point, dans le sens de l'écoulement de l'eau ;
- Banque hydro (http://www.hydro.eaufrance.fr/) : Service français d'accès à des données hydrologiques fournies par des services de l'Etat (Direction régionale de l'environnement, de l'aménagement et du logement - DREAL, Voies navigables de France - VNF) et d'autres producteurs ;
- Basses eaux : Cf § 7.1;
- Bassin versant : Surface d'alimentation d'un cours d'eau ou d'un plan d'eau. Le bassin versant se définit comme l'aire de collecte des eaux, considérée à partir d'un exutoire : elle est limitée par le contour à l'intérieur duquel toutes les eaux s'écoulent en surface et en souterrain vers cet exutoire.
 Ses limites sont les lignes de partage des eaux.;
- O Débit : Volume d'eau qui traverse une section transversale d'un cours d'eau dans un laps de temps déterminé. Les débits des cours d'eau sont exprimés en m3/s ou, pour les petits cours d'eau, en l/s ;
- Débit biologique : débit minimum à conserver dans le lit d'un cours d'eau afin de garantir en permanence la vie, la reproduction et la circulation des espèces aquatiques ;
- Débit caractéristique d'étiage : Cf. § 7.1 ;
- Débit d'alerte renforcée : Débit intermédiaire entre le débit seuil d'alerte et le débit d'étiage de crise, permettant d'introduire des mesures de restriction progressives des usages. Ce débit d'alerte renforcée est défini de manière à laisser un délai suffisant avant le passage du seuil de crise, pour la mise en place de mesures effectives ;
- Débit Objectif d'Etiage (DOE) : Les DOE (débits d'objectif d'étiage) sont les débits « permettant de satisfaire l'ensemble des usages en moyenne huit années sur dix et d'atteindre le bon état des eaux ». Le Glossaire sur l'eau apporte les précisions suivantes : Valeur de débit moyen mensuel au point nodal (point clé de gestion) au-dessus de laquelle, il est considéré qu'à l'aval du point nodal, l'ensemble des usages (activités, prélèvements, rejet...) est en équilibre avec le bon fonctionnement du milieu aquatique. C'est un objectif structurel, arrêté dans les SDAGE, SAGE et documents

équivalents, qui prend en compte le développement des usages à un certain horizon. Il peut être affecté d'une marge de tolérance et modulé dans l'année en fonction du régime (saisonnalité). L'objectif DOE est atteint par la maîtrise des autorisations de prélèvements en amont, par la mobilisation de ressources nouvelles et des programmes d'économies d'eau portant sur l'amont et aussi par un meilleur fonctionnement de l'hydrosystème;

- Débit seuil d'alerte (DSA): Valeur "seuil" de débit d'étiage qui déclenche les premières mesures de restriction pour certaines activités. Ces mesures sont prises à l'initiative de l'autorité préfectorale, en liaison avec une cellule de crise et conformément à un plan de crise. En dessous de ce seuil, l'une des fonctions (ou activités) est compromise. Pour rétablir partiellement cette fonction, il faut donc en limiter temporairement une autre : prélèvement ou rejet (premières mesures de restrictions). En cas d'aggravation de la situation, des mesures de restrictions supplémentaires sont progressivement mises en œuvre pour éviter de descendre en dessous du débit de crise (DCR);
- Débit de crise (DCR): Le DCR (débit de crise) est le débit moyen journalier en dessous duquel seules les exigences de la santé, de la salubrité publique, de la sécurité publique et de l'alimentation en eau de la population et les besoins des milieux naturels peuvent être satisfaits. À ce niveau, toutes les mesures de restriction des prélèvements et des rejets doivent donc avoir été mises en œuvre;
- Débit mensuel quinquennal sec : Cf. § 7.1;
- Débit spécifique : Débit par unité de superficie de bassin versant exprimé généralement en litres/seconde/km². Permet la comparaison entre des cours d'eau sur des bassins versants différents ;
- Désinfluencée (hydrologie) : L'hydrologie désinfluencée englobe l'ensemble des processus hydrologiques qui auraient lieu en l'absence d'actions anthropiques de prélèvements et de rejets d'eau dans le milieu naturel;
- Etiage : Cf § 7.1;
- Evapotranspiration: Emission de la vapeur d'eau résultant de deux phénomènes: l'évaporation, qui est un phénomène purement physique, et la transpiration des plantes. La recharge des nappes phréatiques par les précipitations tombant en période d'activité du couvert végétal peut être limitée. En effet, la majorité de l'eau est évapotranspirée par la végétation. Elle englobe la perte en eau due au climat, les pertes provenant de l'évaporation du sol et de la transpiration des plantes;
- Exutoire : En hydrologie on utilise ce terme pour désigner l'issue (ou l'une des issues) d'un système physique (élémentaire ou complexe) traversé par un fluide en mouvement ;
- Hautes eaux : Cf. § 7.1;
- Hydraulicité: Rapport du débit moyen annuel (module) d'un cours d'eau lors d'une année déterminée au module calculé sur une longue période, destiné à caractériser l'abondance de l'écoulement pendant cette année particulière;
- o Influencée (hydrologie) : L'hydrologie influencée englobe l'ensemble des processus hydrologiques qui ont lieu en présence d'actions anthropiques de prélèvements et de rejets d'eau dans le milieu naturel. Il s'agit des processus hydrologiques ayant réellement lieu ;

- Masse d'eau souterraine : La Directive Cadre sur l'Eau (DCE-2000/60/CE) introduit la notion de « masses d'eaux souterraines » qu'elle définit comme « un volume distinct d'eau souterraine à l'intérieur d'un ou de plusieurs aquifères ». La délimitation des masses d'eaux souterraines est fondée sur des critères hydrogéologiques, puis éventuellement sur la considération de pressions anthropiques importantes. Ces masses d'eau sont caractérisées par six types de fonctionnement hydraulique, leur état (libre/captif) et d'autres attributs. Une masse d'eau correspond d'une façon générale sur le district hydrographique à une zone d'extension régionale représentant un aquifère ou regroupant plusieurs aquifères en communication hydraulique, de taille importante ;
- Masse d'eau superficielle : Il s'agit d'un découpage élémentaire des milieux aquatiques destinée à être l'unité d'évaluation de la Directive Cadre sur l'Eau (DCE-2000/60/CE). Une masse d'eau de surface est une partie distincte et significative des eaux de surface, telles qu'un lac, un réservoir, une rivière, un fleuve ou un canal, une partie de rivière, de fleuve ou de canal, une eau de transition ou une portion d'eaux côtières. Pour les cours d'eau, la délimitation des masses d'eau est basée principalement sur la taille du cours d'eau et la notion d'hydro-écorégion;
- Modèle hydrologique (ou pluie/débit) : Outil numérique de représentation de la relation pluie-débit à l'échelle d'un bassin versant. Il permet de transformer des séries temporelles décrivant le climat d'un bassin versant donné (séries de précipitations et de températures par exemple, séries qui sont les entrées du modèle hydrologique) en une série de débits (sortie du modèle hydrologique);
- Module: Cf § 7.1;
- Nappe souterraine : Ensemble de l'eau contenue dans une fraction perméable de la croûte terrestre totalement imbibée, conséquence de l'infiltration de l'eau dans les moindres interstices du sous-sol et de son accumulation au-dessus d'une couche imperméable;
- Nappe captive: Volume d'eau souterraine généralement à une pression supérieure à la pression atmosphérique car isolée de la surface du sol par une formation géologique imperméable. Une nappe peut présenter une partie libre et une partie captive. Les nappes captives sont souvent profondes, voire très profondes (1000 m et plus);
- Nappe libre: Volume d'eau souterraine dont la surface est libre, c'est-à-dire à la pression atmosphérique. La surface d'une nappe libre fluctue donc sans contrainte. Ces nappes sont souvent peu profondes;
- Nappe d'accompagnement : Nappe d'eau souterraine voisine d'un cours d'eau dont les propriétés hydrauliques sont très liées à celles du cours d'eau. L'exploitation d'une telle nappe induit une diminution du débit d'étiage du cours d'eau, soit parce que la nappe apporte moins d'eau au cours d'eau, soit parce que le cours d'eau se met à alimenter la nappe ;
- Piézométrie: Hauteur du niveau d'eau dans le sol. Elle est exprimée soit par rapport au sol en m, soit par rapport à l'altitude zéro du niveau de la mer en m NGF (Nivellement Général Français). La surface de la nappe correspond au niveau piézométrique;
- QMNA: Cf. § 7.1;
- QMNA5 : Cf. § 7.1;

- Recharge de nappe ou d'aquifère : La réalimentation des aquifères ou infiltration résulte naturellement d'un processus hydrologique par lequel les eaux de surface percolent à travers le sol et s'accumulent sur le premier horizon imperméable rencontré;
- o Retenue (réserve) : Cf. § 7.1;
- Socle : Les domaines de « socle » en géologie concernent les régions constituées d'un ensemble rocheux induré, composé de roches cristallines, plutoniques (granite, roches basiques...) et de celles résultant du métamorphisme de roches sédimentaires (gneiss, schistes, micaschistes...);
- Station hydrologique ou hydrométrique : Une station hydrologique, également appelée station hydrométrique, sert à l'observation d'un ou de plusieurs éléments déterminés en vue de l'étude de phénomènes hydrologiques. Dans le cadre de la présente étude, l'élément concerné est le débit;
- Station limnimétrique : Un limnimètre ou station limnimétrique est un équipement qui permet l'enregistrement et la transmission de la mesure de la hauteur d'eau (en un point donné) dans un cours d'eau. Les hauteurs sont souvent exprimées soit en mètres, soit en centimètres ;
- Stationnarité: Une des grandes questions dans l'étude de séries temporelles (ou chronologiques) est de savoir si celles-ci suivent un processus stationnaire. On entend par là le fait que la structure du processus sous-jacent supposé évolue ou non avec le temps. Si la structure reste la même, le processus est dit alors stationnaire;
- Surévaporation : La surévaporation désigne la portion de la quantité d'eau évaporée par un plan d'eau artificiel qui n'aurait pas été évaporée si ce plan d'eau n'existait pas ;
- Surface pondérée utile (SPU) : Cf. § 7.1;
- Unité de gestion : Dans le cadre de cette étude, une unité de gestion désigne une zone géographique dont les délimitations sont hydrologiquement cohérentes, au sein de laquelle des caractéristiques spécifiques ont été identifiées, du point de vue de l'hydrologie, des milieux, des usages et du climat ;
- VCNd: Cf. § 7.1;
- Volume prélevable : le volume prélevable est le volume que le milieu est capable de fournir dans des conditions écologiques satisfaisantes, pour satisfaire tous les usages ;
- O Zone de répartition des eaux : Zone comprenant les bassins, sous-bassins, fractions de sous-bassins hydrographiques et systèmes aquifères définis dans le décret du 29 avril 1994. Les zones de répartition des eaux (ZRE) sont des zones où est constatée une insuffisance, autre qu'exceptionnelle, des ressources par rapport aux besoins. Elles sont définies afin de faciliter la conciliation des intérêts des différents utilisateurs de l'eau. Les seuils d'autorisation et de déclaration du décret nomenclature y sont plus contraignants. Dans chaque département concerné, la liste de communes incluses dans une zone de répartition des eaux est constatée par arrêté préfectoral.

7.3 Acronymes

Le présent rapport faisant appel à de nombreux acronymes, ces derniers sont récapitulés ci-après pour une compréhension plus aisée du texte :

- o AEP: Approvisionnement en Eau Potable;
- o CLE: Commission Locale de l'Eau;
- o DB: Débit Biologique;
- o DBb: Débit Biologique Bas;
- o DBh: Débit Biologique Haut;
- DOE : Débit Objectif d'Etiage ;
- ETP: Evapotranspiration;
- GIEC : Groupe d'experts intergouvernemental sur l'évolution du climat ;
- o HMUC: Hydrologie, Milieux, Usages, Climat;
- o POE: Piézométrie Objective d'Etiage;
- O QMN5: Débit Mensuel Quinquennal Sec (voir définition associée au chapitre suivant);
- QMNA5 : Débit Mensuel Minimal de l'année Quinquennal Sec (voir définition associée au chapitre suivant);
- o SDAGE : Schéma Directeur d'Aménagement et de Gestion de l'Eau
- o SPU: Surface Pondérée Utile (voir définition associée au chapitre suivant);
- o UG: Unité de Gestion;
- o VP : Volume Prélevable
- o VPM : Volume Potentiellement Mobilisable