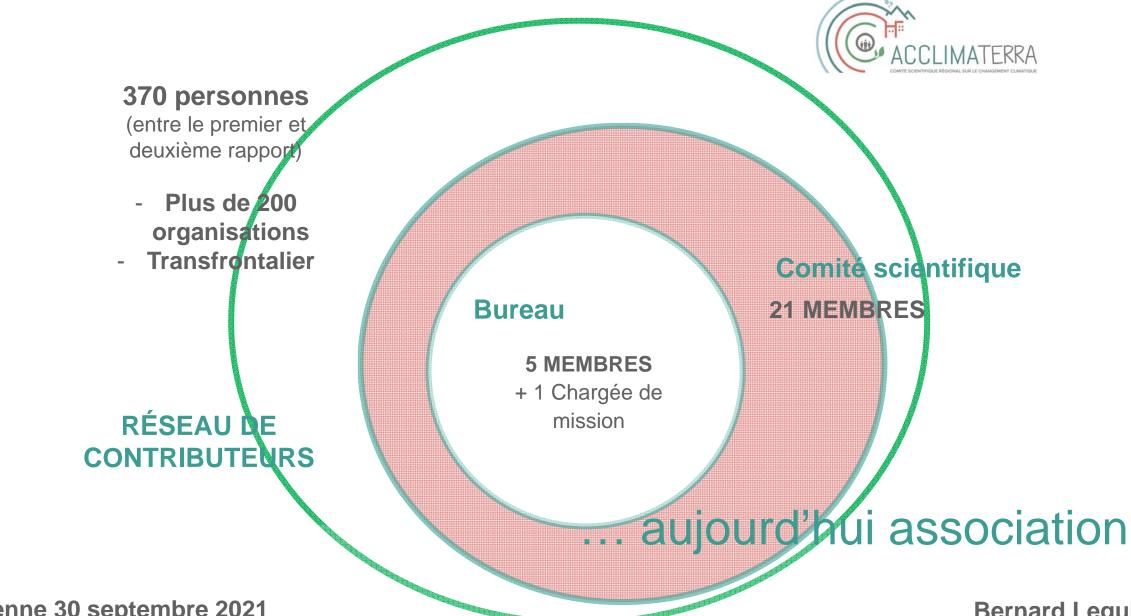


Séminaire « Changement climatique et ressources en eau sur le bassin de la Vienne »

Synthèse des travaux d'AcclimaTerra et des enjeux liés au changement climatique

Bernard Legube

Professeur Emérite de l'Université de Poitiers – Laboratoire IC2MP – ENSI-Poitiers Président du conseil scientifique du Bassin (et de l'Agence de l'Eau) Adour-Garonne Administrateur de AcclimaTerra et de l'ARB NA


Visio-conférence – 30 septembre 2021

AcclimaTerra, qui sommes-nous?

EPTB Vienne 30 septembre 2021

Bernard Legube

AcclimaTerra, que faisons-nous?

BESOIN:

- Mieux comprendre les impacts du changement climatique au niveau régional
- Déterminer les enjeux auxquels la Région Aquitaine allait faire face
- Anticiper les besoins d'adaptation du territoire

LE PROJET:

- Mission confiée à Hervé Le Treut
- 15 chercheurs / coordinateurs et 170 collaborateurs multidisciplinaires
- Un travail prospectif inspiré par le GIEC

LES REALISATIONS:

- Ouvrages collectifs
- Communications
- Diffusion des connaissances
- Rédaction de « Carnets »

AcclimaTerra, que faisons-nous?

Etude des nombreux impacts du CC en Nouvelle-Aquitaine

Santé environnementale

Agriculture – Elevage - Viticulture

Modifications du littoral

<u>Disponibilité des ressources en eau</u> <u>Qualité des milieux naturels (eau, air et sol)</u>

Biodiversité – Zones humides
Forêts - Massifs montagneux
Territoires urbains
Production énergie
Pêche et conchyliculture
Instruments juridiques et assurances

Appropriation citoyenne et participation

Des effets directs et indirects sur la santé

Source
Chapitre « Santé » :
V. Migeot, S. Rabouan et coll.

Des sols moins fertiles

et déstockant probablement les polluants

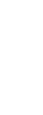
Source
Chapitre « Qualité des milieux » :
A. Chabbi, B. Legube et coll.

HAUSSE DE TEMPÉRATURE

PERTE DE CARBONE = SOLS MOINS FERTILI

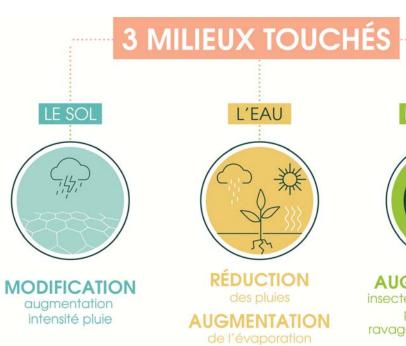
Augmentation de l'activité biologique AUGMENTATION DE LA MINÉRALISATION EFFETS SUR LE CYCLE DE L'AZOTE

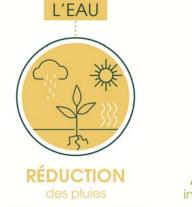
AUGMENTATION DE LA BIODISPONIBILITÉ DES MÉTAUX



- AUGMENTATION DU CO₂
 Manque de nutriments
 AZOTE et PHOSPHORE
- SCÉNARIOS CLIMATIQUES FUTURS
 Affecte les populations
 microbiennes = moins fertiles

Agriculture


un secteur économique de 1^{er} rang



Source

Chapitre « Quelle agriculture pour demain? »: N. Ollat, F. Gastal, F. Pellerin et coll.

AUGMENTATION

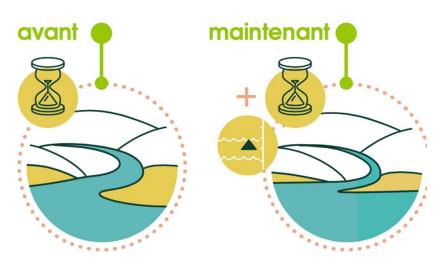
insectes, champignons ... pathogènes, ravageurs ou bénéfiques

CONSÉQUENCES **DU CHANGEMEN** CLIMATIQUE

PHÉNOLOGIE • RENDEMENT • QUALITÉ

ANIMAL

-25 % de lait à partir de 32-38°C


PRODUITS

fruits malformés, qualité du vin altérée

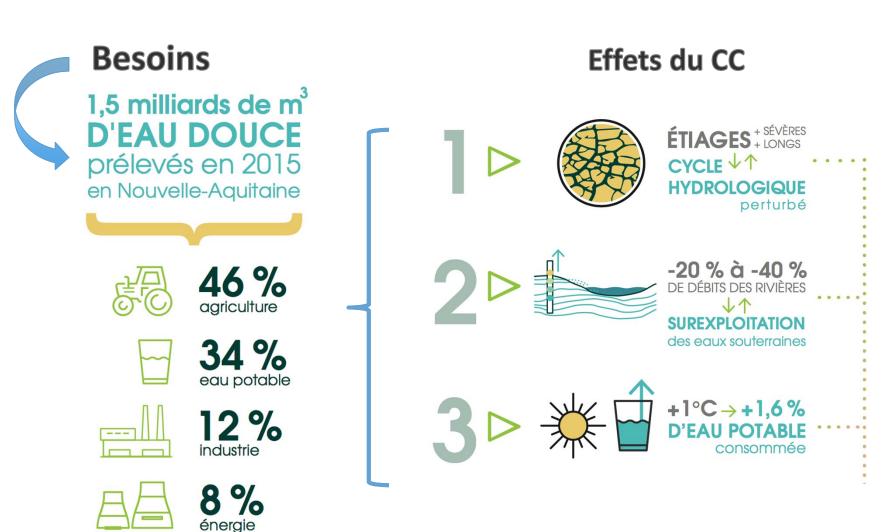
Le littoral pendant le XXI^e siècle ?

ENVIRON

1 m/an

ÉROSION

Source


Chapitre « Modifications physiques du littoral »:

B. Castelle et coll.

Disponibilité en eau

Source Chapitre « Disponibilité en eau » : A. Dupuy et coll.

Une qualité des eaux qui va continuer à se dégrader sous l'effet du changement climatique

AUGMENTATION TEMPÉRATURE

Eaux de surface particulièrement impactées par

→ Moins de dilution de la pollution

→ Polluants dans

les sédiments

→ -5 % d'oxygène dissous

BAISSE DÉBIT

→ Rivalités entre les espèces

Evènements climato-hydrologiques extrêmes Sécheresse du sol Dégradation des forêts, de la ripisylve

Evènements climato-hydrologiques extrêmes

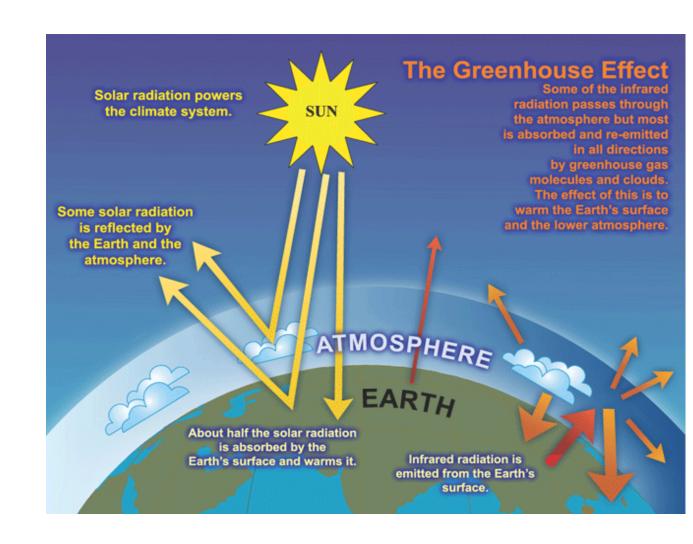
(crues, assecs, immersions marines, élévation du niveau des océans)

molécules mères et métabolites

par

DES EAUX SOUTERRAINES

Sources Données ARB Nouvelle Aquitaine Chapitre Acclimaterra:


Qualité des Milieux - Bernard Legube et al.

EPTB Vienne 30 septembre 2021

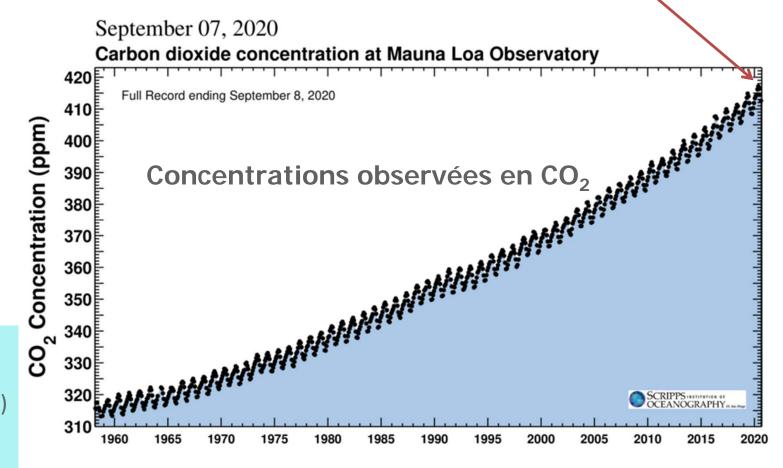
Bernard Legube

Les grands enjeux liés au changement climatique

Où en sommes-nous à l'échelle planétaire ?

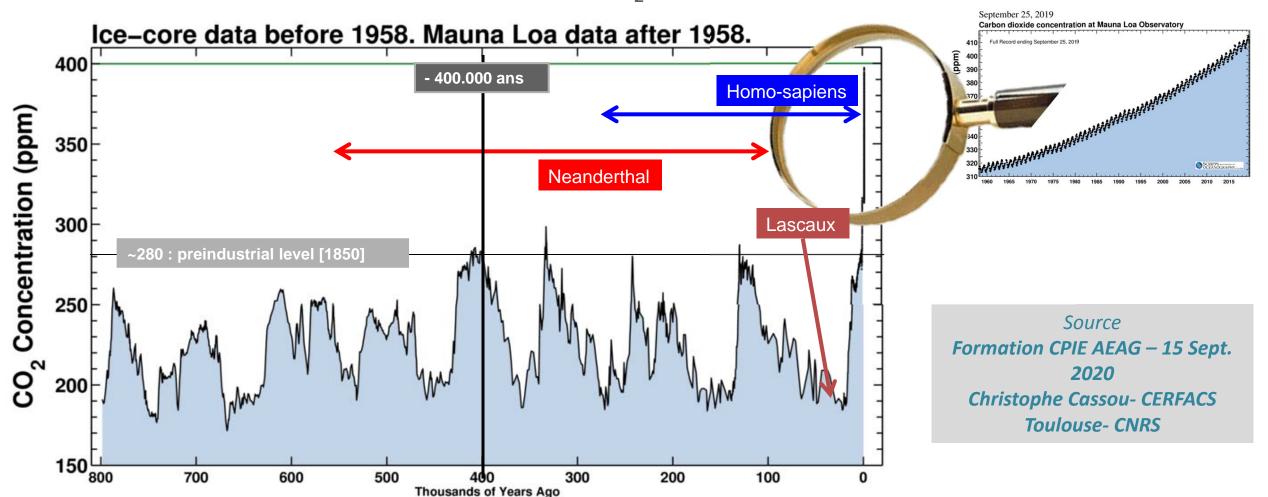
Le réchauffement induit par les activités humaines a approximativement atteint 1°C au-dessus du niveau préindustriel en 2017. Au taux actuel, le réchauffement global devrait atteindre 1,5°C autour de 2040.

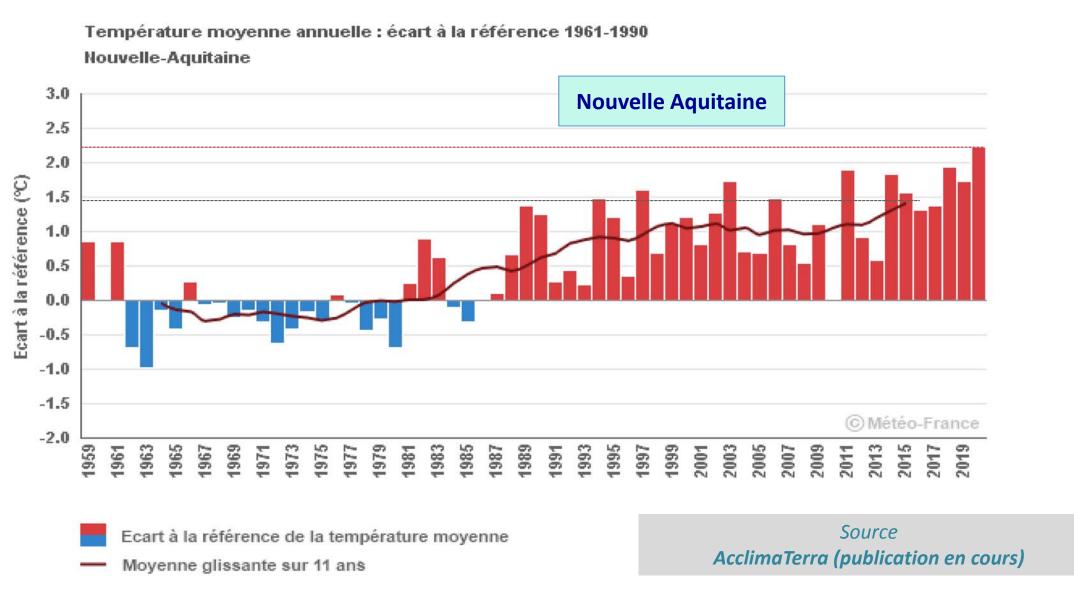
Où en sommes-nous à l'échelle planétaire ?


411 ppm CO₂

Mesure directe de la concentration de CO₂ a Mauna-Loa (Hawaii –US)

2017


 CO_2 = 400 ppm CH_4 (1,8 ppm) soit 41,4 ppm en éq. CO_2 (PRG 23) N_2O (0,3 ppm) soit 93 ppm en éq. CO_2 (310) **Total d'environ 535 ppm d'éq. CO_2 en 2017** Scénario 2.6 : 490 ppm maximum ?


Source
Formation CPIE AEAG – 15 Sept. 2020
Christophe Cassou- CERFACS Toulouse- CNRS

Où en sommes-nous à l'échelle planétaire ?


Concentrations observées en CO₂

Où en sommes-nous en France métropolitaine ?

Où en sommes-nous en France métropolitaine ?

Sur le cycle hydrologique et la disponibilité en eau douce ?

Indicateurs conduisant au constat de l'impact actuel probable du changement climatique en France métropolitaine

Indicateurs du constat, reconnus par la communauté scientifique	Indicateurs du constat, qui nécessitent confirmation (origine)	Indicateurs non (ou très peu) représentatifs
Augmentation de l'évapotranspiration	Augmentation des périodes de pluviométrie intense et des périodes de sécheresse	Cumul annuel de précipitation
Diminution des débits moyens annuels des rivières et fleuves de plus de 20 % depuis 60 à 70 ans (sud de la France)	Augmentation de la durée des étiages et des assecs	Niveaux piézométriques et taux de recharge des nappes
Augmentation de la sécheresse des sols	Plafonnement des rendements agricoles	
Evolution de la biodiversité		

Sur le cycle hydrologique et la disponibilité en eau douce ?

Principales projections à horizon du milieu du XXIème siècle pour la France métropolitaine

Projections robustes en toutes régions	Projections semi-robustes car encore incertaines dan certaines régions	
Augmentation de l'évapotranspiration due au réchauffement climatique	Variation saisonnière plus marquées des précipitations	Diminution faible mais significatives de cumul annuel de précipitation
Baisse généralisée sur tout le territoire des débits des cours d'eau en été et en automne (jusqu'à 50 %, parfois plus)	Baisse généralisée des modules des cours d'eau	Hausse des débits d'hiver
Pics de fonte avancés de 1 mois pour tous les cours d'eau à influence nivale	Baisse du taux de recharge des nappes	Evolutions de la demande en eau
Accroissement très important du déséquilibre « Besoins/ressources », notamment pour le grand sud-ouest		Extrait de La production d'eau potable : Procédés de traitement, paramètres de qualité, impacts du changement climatique (2ème édition) Bernard Legube

EPTB Vienne 30 septembre 2021

DUNOD Paris (à paraitre fin 2021)

Sur le cycle hydrologique et la disponibilité en eau douce ?

Explore 2070 en qqs chiffres (SRES A1B, moyenne de 14 simulations Comparaison entre périodes 1961-90 et 2046-2065)

Fleuves (et principaux affluents)	Ordre de grandeur de la diminution du débit moyen annuel
Adour	40 à 50 %
Charente	20 à 30 %
Garonne (zone sud-ouest avec Tarn, Gers et Ariège)	40 à 50 %
Garonne (zone centre ouest avec Dordogne et Lot)	20 à 30 %
Loire (+ Mayenne, Sarthe, Loir, Indre, Vienne, Creuse et Allier)	20 à 30 %
Meuse (+ Moselle)	10 à 20 %
Rance	20 à 30 %
Rhône (+ Saône et Durance)	10 à 20 %
Seine (+ Eure, Marne, Aisne et Oise	30 à 40 %
Somme	20 à 30 %
Vilaine	5 à 10 %

Une qualité des eaux qui va continuer à se dégrader sous l'effet du changement climatique

Quelques données nationale récentes

On constate

- Une augmentation de la température des eaux de l'ordre de 0,02 à 0,03 °C par année en moyenne depuis 30 à 40 ans
- Des trajectoires nouvelles des écosystèmes (autochtones et envahissants)
- Une recrudescence des phénomènes d'eutrophisation et du développement des cyanobactéries (y compris en cours d'eau)
- Une augmentation des teneurs en matières organiques naturelles (MON) aquatiques et une modification de leur structure
- Certaines difficultés à satisfaire les paramètres de qualité des eaux destinées à la consommation humaine (eau potable) lors du traitement et la distribution.

Une qualité des eaux qui va continuer à se dégrader sous l'effet du changement climatique

Quelques données nationale récentes

On prévoit (et on craint)

- Des milieux aquatiques superficiels devenant des lieux de vie moins en moins favorables au développement de certaines espèces (température, oxygène, toxicité)
- Des masses d'eau de surface de plus en plus polluées, si rien n'est fait en dépollution des rejets
- Des « déstockages » des polluants (nitrates, métaux) et des micropolluants organiques (pesticides) notamment par métabolisation
- Une modification systématique de la nature des MON et une augmentation de leur teneur
- Des impacts significatifs sur le traitement et la distribution de l'eau potable et sur son coût (traitement EP, réseaux, épuration ...) et autres impacts socio-économiques (pêche, ostréiculture, loisirs ...)

Que faire?

L'atténuation en premier lieu

Les modèles de prévision à l'échelle planétaire (avec leur incertitude), prévoient + 1,5 à 2,8 °C à horizon 2050 (par rapport à 1980/2000) dans les meilleurs cas et jusqu'à + 5 à 6°C d'ici la fin du siècle à partir du scénario d'émission de GES le plus pessimiste.

Le seul moyen de freiner cette évolution à l'échelle de la planète est de réduire les émissions de GES. C'est l'ATTENUATION. Si rien n'ai fait, certaines modifications pourraient devenir irréversibles au delà de la moitié du XXIème siècle.

✓A l'échelle mondiale, comme nationale, il n'y a pas de diminution pour le moment des émissions de gaz à effet de serre, alors que les derniers rapports du GIEC annoncent qu'il faudrait arriver rapidement à zéro émission nette de GES et qu'il ne faudrait pas dépasser le « pic » des 490 ppm du scénario 2.6 ??

Ø« Pour arriver à zéro émission nette de GES, il faut des transformations de très grande ampleur » (H. Le Treut, L'Actualité Nouvelle Aquitaine)

Il faudra <u>aussi</u> s'adapter par ajustement et par transformation et certainement par renoncement

Que faire?

Les pistes d'adaptation pour réduire l'important déséquilibre entre demande et ressource

Une mise en place d'une politique de l'eau avec des incitations financières et une gouvernance adaptée aux effets du changement climatique

Des économies d'eau sur tous les usages et une meilleure protection des ressources

Des recherches systématiques de gains apportés par la mise en place de solutions fondées sur la nature, notamment en agro-écologie

Une mobilisation plus importante et plus optimisée des ressources et stockages existants et des ressources non conventionnelles (réutilisation)

Le tout dans un esprit de gestion collective et solidaire (entre l'urbain et le rural et entre l'amont et l'aval) ainsi qu'une communication claire et compréhensive par tous

Séminaire « Changement climatique et ressources en eau sur le bassin de la Vienne »

Synthèse des travaux d'AcclimaTerra et des enjeux liés au changement climatique

Bernard Legube

Professeur Emérite de l'Université de Poitiers – Laboratoire IC2MP – ENSI-Poitiers Président du conseil scientifique du Bassin (et de l'Agence de l'Eau) Adour-Garonne Administrateur de AcclimaTerra et de l'ARB NA

Merci pour votre attention

